S. Paredis, T. Cardeynaels, S. Brebels, J. Deckers, S. Kuila, A. Lathouwers, M. Van Landeghem, K. Vandewal, A. Danos, A. P. Monkman, B. Champagne and W. Maes
{"title":"分子内锁定和香豆素插入:TADF设计的逐步方法。","authors":"S. Paredis, T. Cardeynaels, S. Brebels, J. Deckers, S. Kuila, A. Lathouwers, M. Van Landeghem, K. Vandewal, A. Danos, A. P. Monkman, B. Champagne and W. Maes","doi":"10.1039/D3CP03695B","DOIUrl":null,"url":null,"abstract":"<p >Three novel TADF (thermally activated delayed fluorescence) emitters based on the well-studied <strong>Qx-Ph-DMAC</strong> fluorophore are designed and synthesized. The photophysical properties of these materials are studied from a theoretical and experimental point of view, demonstrating the cumulative effects of multiple small modifications that combine to afford significantly improved TADF performance. First, an extra phenyl ring is added to the acceptor part of <strong>Qx-Ph-DMAC</strong> to increase the conjugation length, resulting in <strong>BQx-Ph-DMAC</strong>, which acts as an intermediate molecular structure. Next, an electron-deficient coumarin unit is incorporated to fortify the electron accepting ability, affording <strong>ChromPy-Ph-DMAC</strong> with red-shifted emission. Finally, the conjugated system is further enlarged by ‘locking’ the molecular structure, generating <strong>DBChromQx-DMAC</strong> with further red-shifted emission. The addition of the coumarin unit significantly impacts the charge-transfer excited state energy levels with little effect on the locally excited states, resulting in a decrease of the singlet–triplet energy gap. As a result, the two coumarin-based emitters show considerably improved TADF performance in 1 w/w% zeonex films when compared to the initial <strong>Qx-Ph-DMAC</strong> structure. ‘Locking’ the molecular structure further lowers the singlet–triplet energy gap, resulting in more efficient reverse intersystem crossing and increasing the contribution of TADF to the total emission.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 43","pages":" 29842-29849"},"PeriodicalIF":2.9000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2023/cp/d3cp03695b?page=search","citationCount":"0","resultStr":"{\"title\":\"Intramolecular locking and coumarin insertion: a stepwise approach for TADF design†\",\"authors\":\"S. Paredis, T. Cardeynaels, S. Brebels, J. Deckers, S. Kuila, A. Lathouwers, M. Van Landeghem, K. Vandewal, A. Danos, A. P. Monkman, B. Champagne and W. Maes\",\"doi\":\"10.1039/D3CP03695B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Three novel TADF (thermally activated delayed fluorescence) emitters based on the well-studied <strong>Qx-Ph-DMAC</strong> fluorophore are designed and synthesized. The photophysical properties of these materials are studied from a theoretical and experimental point of view, demonstrating the cumulative effects of multiple small modifications that combine to afford significantly improved TADF performance. First, an extra phenyl ring is added to the acceptor part of <strong>Qx-Ph-DMAC</strong> to increase the conjugation length, resulting in <strong>BQx-Ph-DMAC</strong>, which acts as an intermediate molecular structure. Next, an electron-deficient coumarin unit is incorporated to fortify the electron accepting ability, affording <strong>ChromPy-Ph-DMAC</strong> with red-shifted emission. Finally, the conjugated system is further enlarged by ‘locking’ the molecular structure, generating <strong>DBChromQx-DMAC</strong> with further red-shifted emission. The addition of the coumarin unit significantly impacts the charge-transfer excited state energy levels with little effect on the locally excited states, resulting in a decrease of the singlet–triplet energy gap. As a result, the two coumarin-based emitters show considerably improved TADF performance in 1 w/w% zeonex films when compared to the initial <strong>Qx-Ph-DMAC</strong> structure. ‘Locking’ the molecular structure further lowers the singlet–triplet energy gap, resulting in more efficient reverse intersystem crossing and increasing the contribution of TADF to the total emission.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\" 43\",\"pages\":\" 29842-29849\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2023/cp/d3cp03695b?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/cp/d3cp03695b\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/cp/d3cp03695b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Intramolecular locking and coumarin insertion: a stepwise approach for TADF design†
Three novel TADF (thermally activated delayed fluorescence) emitters based on the well-studied Qx-Ph-DMAC fluorophore are designed and synthesized. The photophysical properties of these materials are studied from a theoretical and experimental point of view, demonstrating the cumulative effects of multiple small modifications that combine to afford significantly improved TADF performance. First, an extra phenyl ring is added to the acceptor part of Qx-Ph-DMAC to increase the conjugation length, resulting in BQx-Ph-DMAC, which acts as an intermediate molecular structure. Next, an electron-deficient coumarin unit is incorporated to fortify the electron accepting ability, affording ChromPy-Ph-DMAC with red-shifted emission. Finally, the conjugated system is further enlarged by ‘locking’ the molecular structure, generating DBChromQx-DMAC with further red-shifted emission. The addition of the coumarin unit significantly impacts the charge-transfer excited state energy levels with little effect on the locally excited states, resulting in a decrease of the singlet–triplet energy gap. As a result, the two coumarin-based emitters show considerably improved TADF performance in 1 w/w% zeonex films when compared to the initial Qx-Ph-DMAC structure. ‘Locking’ the molecular structure further lowers the singlet–triplet energy gap, resulting in more efficient reverse intersystem crossing and increasing the contribution of TADF to the total emission.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.