Juhee Park, Eun Hye Lee, Hyunchae Sim, Ann-Yae Na, So Young Choi, Jae-Wook Chung, Yun-Sok Ha, Tae Gyun Kwon, Sangkyu Lee, Jun Nyung Lee
{"title":"使用比较蛋白质组学鉴定透明细胞肾细胞癌中的蛋白质特征。","authors":"Juhee Park, Eun Hye Lee, Hyunchae Sim, Ann-Yae Na, So Young Choi, Jae-Wook Chung, Yun-Sok Ha, Tae Gyun Kwon, Sangkyu Lee, Jun Nyung Lee","doi":"10.21873/cgp.20408","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aim: </strong>Renal cell carcinoma (RCC) is one of the most commonly diagnosed cancers in the world. Approximately 25-30% of patients identified with initial kidney cancer will have metastasized tumors, thus 5-year survival rates for these patients are poor. Therefore, biomarker research is required to identify and predict molecular signatures in RCC.</p><p><strong>Materials and methods: </strong>To address this, we used a mass spectrometry (MS)-based proteomics approach to identify proteins related to clear cell RCC (ccRCC) tissues from patients with T1G2, T1G3, T3G2, T3G3, and metastatic RCC (mRCC) stages.</p><p><strong>Results: </strong>We identified and quantified 2,608 and 2,463 proteins, respectively, in ccRCC tissue and identified 1,449 differentially expressed proteins (DEPs). Bioinformatics analysis revealed that serpin family A member 3 (SERPINA3) qualified as biomarker for ccRCC progression. Using indirect enzyme-linked immunosorbent assay (ELISA), immunoblotting, and immunohistochemistry assays it was found that SERPINA3 expression levels in ccRCC tissues were much higher in stages before metastasis.</p><p><strong>Conclusion: </strong>Comparative proteomics analysis of ccRCC tissues provided new evidence of SERPINA3 association with ccRCC progression.</p>","PeriodicalId":9516,"journal":{"name":"Cancer Genomics & Proteomics","volume":"20 6","pages":"592-601"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614069/pdf/","citationCount":"0","resultStr":"{\"title\":\"Using Comparative Proteomics to Identify Protein Signatures in Clear Cell Renal Cell Carcinoma.\",\"authors\":\"Juhee Park, Eun Hye Lee, Hyunchae Sim, Ann-Yae Na, So Young Choi, Jae-Wook Chung, Yun-Sok Ha, Tae Gyun Kwon, Sangkyu Lee, Jun Nyung Lee\",\"doi\":\"10.21873/cgp.20408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background/aim: </strong>Renal cell carcinoma (RCC) is one of the most commonly diagnosed cancers in the world. Approximately 25-30% of patients identified with initial kidney cancer will have metastasized tumors, thus 5-year survival rates for these patients are poor. Therefore, biomarker research is required to identify and predict molecular signatures in RCC.</p><p><strong>Materials and methods: </strong>To address this, we used a mass spectrometry (MS)-based proteomics approach to identify proteins related to clear cell RCC (ccRCC) tissues from patients with T1G2, T1G3, T3G2, T3G3, and metastatic RCC (mRCC) stages.</p><p><strong>Results: </strong>We identified and quantified 2,608 and 2,463 proteins, respectively, in ccRCC tissue and identified 1,449 differentially expressed proteins (DEPs). Bioinformatics analysis revealed that serpin family A member 3 (SERPINA3) qualified as biomarker for ccRCC progression. Using indirect enzyme-linked immunosorbent assay (ELISA), immunoblotting, and immunohistochemistry assays it was found that SERPINA3 expression levels in ccRCC tissues were much higher in stages before metastasis.</p><p><strong>Conclusion: </strong>Comparative proteomics analysis of ccRCC tissues provided new evidence of SERPINA3 association with ccRCC progression.</p>\",\"PeriodicalId\":9516,\"journal\":{\"name\":\"Cancer Genomics & Proteomics\",\"volume\":\"20 6\",\"pages\":\"592-601\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614069/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Genomics & Proteomics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.21873/cgp.20408\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Genomics & Proteomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21873/cgp.20408","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Using Comparative Proteomics to Identify Protein Signatures in Clear Cell Renal Cell Carcinoma.
Background/aim: Renal cell carcinoma (RCC) is one of the most commonly diagnosed cancers in the world. Approximately 25-30% of patients identified with initial kidney cancer will have metastasized tumors, thus 5-year survival rates for these patients are poor. Therefore, biomarker research is required to identify and predict molecular signatures in RCC.
Materials and methods: To address this, we used a mass spectrometry (MS)-based proteomics approach to identify proteins related to clear cell RCC (ccRCC) tissues from patients with T1G2, T1G3, T3G2, T3G3, and metastatic RCC (mRCC) stages.
Results: We identified and quantified 2,608 and 2,463 proteins, respectively, in ccRCC tissue and identified 1,449 differentially expressed proteins (DEPs). Bioinformatics analysis revealed that serpin family A member 3 (SERPINA3) qualified as biomarker for ccRCC progression. Using indirect enzyme-linked immunosorbent assay (ELISA), immunoblotting, and immunohistochemistry assays it was found that SERPINA3 expression levels in ccRCC tissues were much higher in stages before metastasis.
Conclusion: Comparative proteomics analysis of ccRCC tissues provided new evidence of SERPINA3 association with ccRCC progression.
期刊介绍:
Cancer Genomics & Proteomics (CGP) is an international peer-reviewed journal designed to publish rapidly high quality articles and reviews on the application of genomic and proteomic technology to basic, experimental and clinical cancer research. In this site you may find information concerning the editorial board, editorial policy, issue contents, subscriptions, submission of manuscripts and advertising. The first issue of CGP circulated in January 2004.
Cancer Genomics & Proteomics is a journal of the International Institute of Anticancer Research. From January 2013 CGP is converted to an online-only open access journal.
Cancer Genomics & Proteomics supports (a) the aims and the research projects of the INTERNATIONAL INSTITUTE OF ANTICANCER RESEARCH and (b) the organization of the INTERNATIONAL CONFERENCES OF ANTICANCER RESEARCH.