蛋白质结合界面中相互作用残基构象稳定性的分析。

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Protein Engineering Design & Selection Pub Date : 2023-01-21 DOI:10.1093/protein/gzad016
Varun M Chauhan, Robert J Pantazes
{"title":"蛋白质结合界面中相互作用残基构象稳定性的分析。","authors":"Varun M Chauhan, Robert J Pantazes","doi":"10.1093/protein/gzad016","DOIUrl":null,"url":null,"abstract":"<p><p>After approximately 60 years of work, the protein folding problem has recently seen rapid advancement thanks to the inventions of AlphaFold and RoseTTAFold, which are machine-learning algorithms capable of reliably predicting protein structures from their sequences. A key component in their success was the inclusion of pairwise interaction information between residues. As research focus shifts towards developing algorithms to design and engineer binding proteins, it is likely that knowledge of interaction features at protein interfaces can improve predictions. Here, 574 protein complexes were analyzed to identify the stability features of their pairwise interactions, revealing that interactions between pre-stabilized residues are a selected feature in protein binding interfaces. In a retrospective analysis of 475 de novo designed binding proteins with an experimental success rate of 19%, inclusion of pairwise interaction pre-stabilization parameters increased the frequency of identifying experimentally successful binders to 40%.</p>","PeriodicalId":54543,"journal":{"name":"Protein Engineering Design & Selection","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10681001/pdf/","citationCount":"0","resultStr":"{\"title\":\"Analysis of conformational stability of interacting residues in protein binding interfaces.\",\"authors\":\"Varun M Chauhan, Robert J Pantazes\",\"doi\":\"10.1093/protein/gzad016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>After approximately 60 years of work, the protein folding problem has recently seen rapid advancement thanks to the inventions of AlphaFold and RoseTTAFold, which are machine-learning algorithms capable of reliably predicting protein structures from their sequences. A key component in their success was the inclusion of pairwise interaction information between residues. As research focus shifts towards developing algorithms to design and engineer binding proteins, it is likely that knowledge of interaction features at protein interfaces can improve predictions. Here, 574 protein complexes were analyzed to identify the stability features of their pairwise interactions, revealing that interactions between pre-stabilized residues are a selected feature in protein binding interfaces. In a retrospective analysis of 475 de novo designed binding proteins with an experimental success rate of 19%, inclusion of pairwise interaction pre-stabilization parameters increased the frequency of identifying experimentally successful binders to 40%.</p>\",\"PeriodicalId\":54543,\"journal\":{\"name\":\"Protein Engineering Design & Selection\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10681001/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein Engineering Design & Selection\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/protein/gzad016\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Engineering Design & Selection","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/protein/gzad016","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

经过大约60年的工作,由于AlphaFold和RoseTTAFold的发明,蛋白质折叠问题最近得到了快速发展,这两种机器学习算法能够根据其序列可靠地预测蛋白质结构。他们成功的一个关键因素是包含了残基之间的成对相互作用信息。随着研究重点转向开发设计和工程结合蛋白的算法,蛋白质界面相互作用特征的知识很可能可以改进预测。在此,分析了574种蛋白质复合物,以确定其成对相互作用的稳定性特征,揭示了预稳定残基之间的相互作用是蛋白质结合界面中的一个选定特征。在475种新设计的结合蛋白的回顾性分析中,实验成功率为19%,包含成对相互作用预稳定参数将鉴定实验成功结合蛋白的频率提高到40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of conformational stability of interacting residues in protein binding interfaces.

After approximately 60 years of work, the protein folding problem has recently seen rapid advancement thanks to the inventions of AlphaFold and RoseTTAFold, which are machine-learning algorithms capable of reliably predicting protein structures from their sequences. A key component in their success was the inclusion of pairwise interaction information between residues. As research focus shifts towards developing algorithms to design and engineer binding proteins, it is likely that knowledge of interaction features at protein interfaces can improve predictions. Here, 574 protein complexes were analyzed to identify the stability features of their pairwise interactions, revealing that interactions between pre-stabilized residues are a selected feature in protein binding interfaces. In a retrospective analysis of 475 de novo designed binding proteins with an experimental success rate of 19%, inclusion of pairwise interaction pre-stabilization parameters increased the frequency of identifying experimentally successful binders to 40%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Protein Engineering Design & Selection
Protein Engineering Design & Selection 生物-生化与分子生物学
CiteScore
3.30
自引率
4.20%
发文量
14
审稿时长
6-12 weeks
期刊介绍: Protein Engineering, Design and Selection (PEDS) publishes high-quality research papers and review articles relevant to the engineering, design and selection of proteins for use in biotechnology and therapy, and for understanding the fundamental link between protein sequence, structure, dynamics, function, and evolution.
期刊最新文献
Optimized single-cell gates for yeast display screening. TIMED-Design: flexible and accessible protein sequence design with convolutional neural networks. Correction to: De novo design of a polycarbonate hydrolase. Interactive computational and experimental approaches improve the sensitivity of periplasmic binding protein-based nicotine biosensors for measurements in biofluids. Design of functional intrinsically disordered proteins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1