Rachel Paul, Renée Dalibart, Soazig Lemoine, Patrick Lestienne
{"title":"大肠杆菌RecA靶向人细胞线粒体的表达","authors":"Rachel Paul, Renée Dalibart, Soazig Lemoine, Patrick Lestienne","doi":"10.1016/S0921-8777(01)00069-6","DOIUrl":null,"url":null,"abstract":"<div><p>Mitochondrial DNA integrity is ensured by several nuclear-encoded proteins in vertebrates, and a number of mtDNA alterations in human diseases, including deletions and duplications, have been suspected to result from errors in the mitochondrial recombination pathway. However, the presence of the latter system is still a matter of controversy as RecA proteins display various functions in vitro. In <em>Escherichia coli</em><span><span><span>, RecA plays a central role in homologous recombination by pairing and transferring a single strand to a homologous duplex DNA. To address indirectly the issue of a mitochondrial recombination pathway in vivo, we have constructed a </span>chimeric gene containing an </span>N terminal<span> mitochondrial targeting sequence and the </span></span><em>E. coli</em><span><span> RecA gene<span>. Cells were transfected by the recombinant plasmid, then tested for their mtDNA repair upon </span></span>bleomycin treatment. We found an increased repair rate of the mitochondrial DNA in cells expressing RecA as compared to control cells. These results indicate that the transfected cells display an improved mtDNA repair replication pathway due to the exogeneous RecA, likely in synergy with an endogeneous rate-limiting mitochondrial recombination pathway.</span></p></div>","PeriodicalId":100935,"journal":{"name":"Mutation Research/DNA Repair","volume":"486 1","pages":"Pages 11-19"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0921-8777(01)00069-6","citationCount":"10","resultStr":"{\"title\":\"Expression of E. coli RecA targeted to mitochondria of human cells\",\"authors\":\"Rachel Paul, Renée Dalibart, Soazig Lemoine, Patrick Lestienne\",\"doi\":\"10.1016/S0921-8777(01)00069-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mitochondrial DNA integrity is ensured by several nuclear-encoded proteins in vertebrates, and a number of mtDNA alterations in human diseases, including deletions and duplications, have been suspected to result from errors in the mitochondrial recombination pathway. However, the presence of the latter system is still a matter of controversy as RecA proteins display various functions in vitro. In <em>Escherichia coli</em><span><span><span>, RecA plays a central role in homologous recombination by pairing and transferring a single strand to a homologous duplex DNA. To address indirectly the issue of a mitochondrial recombination pathway in vivo, we have constructed a </span>chimeric gene containing an </span>N terminal<span> mitochondrial targeting sequence and the </span></span><em>E. coli</em><span><span> RecA gene<span>. Cells were transfected by the recombinant plasmid, then tested for their mtDNA repair upon </span></span>bleomycin treatment. We found an increased repair rate of the mitochondrial DNA in cells expressing RecA as compared to control cells. These results indicate that the transfected cells display an improved mtDNA repair replication pathway due to the exogeneous RecA, likely in synergy with an endogeneous rate-limiting mitochondrial recombination pathway.</span></p></div>\",\"PeriodicalId\":100935,\"journal\":{\"name\":\"Mutation Research/DNA Repair\",\"volume\":\"486 1\",\"pages\":\"Pages 11-19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0921-8777(01)00069-6\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation Research/DNA Repair\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921877701000696\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research/DNA Repair","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921877701000696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Expression of E. coli RecA targeted to mitochondria of human cells
Mitochondrial DNA integrity is ensured by several nuclear-encoded proteins in vertebrates, and a number of mtDNA alterations in human diseases, including deletions and duplications, have been suspected to result from errors in the mitochondrial recombination pathway. However, the presence of the latter system is still a matter of controversy as RecA proteins display various functions in vitro. In Escherichia coli, RecA plays a central role in homologous recombination by pairing and transferring a single strand to a homologous duplex DNA. To address indirectly the issue of a mitochondrial recombination pathway in vivo, we have constructed a chimeric gene containing an N terminal mitochondrial targeting sequence and the E. coli RecA gene. Cells were transfected by the recombinant plasmid, then tested for their mtDNA repair upon bleomycin treatment. We found an increased repair rate of the mitochondrial DNA in cells expressing RecA as compared to control cells. These results indicate that the transfected cells display an improved mtDNA repair replication pathway due to the exogeneous RecA, likely in synergy with an endogeneous rate-limiting mitochondrial recombination pathway.