Zhonghui Luo , Jianhua Zheng , Yi Lu , David B Bregman
{"title":"紫外线辐射改变RNA聚合酶II大亚基的磷酸化,加速其蛋白酶体依赖性降解","authors":"Zhonghui Luo , Jianhua Zheng , Yi Lu , David B Bregman","doi":"10.1016/S0921-8777(01)00097-0","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>It has been shown that ultraviolet (UV) radiation induces the ubiquitination<span> of the large subunit of RNA polymerase II (RNAP II-LS) as well as its proteasomal degradation. Studies in </span></span>mammalian cells have indicated that highly phosphorylated forms of RNAP II-LS are preferentially ubiquitinated, but studies in </span><span><em>Saccharomyces cerevisiae</em></span> have provided evidence that unphosphorylated RNAP II-LS is an equally suitable substrate. In the present study, an antibody (ARNA-3) that recognizes all forms of RNAP II-LS, regardless of the phosphorylation status of its C-terminal domain (CTD), was utilized to evaluate the degradation of total cellular RNAP II-LS in human fibroblasts under basal conditions or after UV-C (10<!--> <!-->J/m<sup>2</sup><span><span>) irradiation. It was found that UV radiation rapidly shifted the phosphorylation profile of RNAP II-LS from a mixture of dephosphorylated and phosphorylated forms to entirely more phosphorylated forms. This shift in phosphorylation status was not blocked by pharmacologic inhibition of either the ERK or p38 pathways, both of which have been implicated in the cellular UV response. In addition to shifting the phosphorylation profile, UV radiation led to net degradation of total RNAP II-LS. UV-induced degradation of RNAP II-LS was also greatly reduced in the presence of the transcriptional and CTD kinase inhibitor DRB. Using a panel of protease inhibitors, it was shown that the bulk of UV-induced degradation is proteasome-dependent. However, the UV-induced loss of hypophosphorylated RNAP II-LS was proteasome-independent. Lastly, UV radiation induced a similar shift to all hyperphosphorylated RNAP II-LS in </span>Cockayne syndrome (CS) cells of complementation groups A or B (CSA or CSB) when compared to appropriate controls. The UV-induced degradation rates of RNAP II-LS were not significantly altered when comparing CSA or CSB to repair competent control cells. The implications for the cellular UV response are discussed.</span></p></div>","PeriodicalId":100935,"journal":{"name":"Mutation Research/DNA Repair","volume":"486 4","pages":"Pages 259-274"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0921-8777(01)00097-0","citationCount":"78","resultStr":"{\"title\":\"Ultraviolet radiation alters the phosphorylation of RNA polymerase II large subunit and accelerates its proteasome-dependent degradation\",\"authors\":\"Zhonghui Luo , Jianhua Zheng , Yi Lu , David B Bregman\",\"doi\":\"10.1016/S0921-8777(01)00097-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>It has been shown that ultraviolet (UV) radiation induces the ubiquitination<span> of the large subunit of RNA polymerase II (RNAP II-LS) as well as its proteasomal degradation. Studies in </span></span>mammalian cells have indicated that highly phosphorylated forms of RNAP II-LS are preferentially ubiquitinated, but studies in </span><span><em>Saccharomyces cerevisiae</em></span> have provided evidence that unphosphorylated RNAP II-LS is an equally suitable substrate. In the present study, an antibody (ARNA-3) that recognizes all forms of RNAP II-LS, regardless of the phosphorylation status of its C-terminal domain (CTD), was utilized to evaluate the degradation of total cellular RNAP II-LS in human fibroblasts under basal conditions or after UV-C (10<!--> <!-->J/m<sup>2</sup><span><span>) irradiation. It was found that UV radiation rapidly shifted the phosphorylation profile of RNAP II-LS from a mixture of dephosphorylated and phosphorylated forms to entirely more phosphorylated forms. This shift in phosphorylation status was not blocked by pharmacologic inhibition of either the ERK or p38 pathways, both of which have been implicated in the cellular UV response. In addition to shifting the phosphorylation profile, UV radiation led to net degradation of total RNAP II-LS. UV-induced degradation of RNAP II-LS was also greatly reduced in the presence of the transcriptional and CTD kinase inhibitor DRB. Using a panel of protease inhibitors, it was shown that the bulk of UV-induced degradation is proteasome-dependent. However, the UV-induced loss of hypophosphorylated RNAP II-LS was proteasome-independent. Lastly, UV radiation induced a similar shift to all hyperphosphorylated RNAP II-LS in </span>Cockayne syndrome (CS) cells of complementation groups A or B (CSA or CSB) when compared to appropriate controls. The UV-induced degradation rates of RNAP II-LS were not significantly altered when comparing CSA or CSB to repair competent control cells. The implications for the cellular UV response are discussed.</span></p></div>\",\"PeriodicalId\":100935,\"journal\":{\"name\":\"Mutation Research/DNA Repair\",\"volume\":\"486 4\",\"pages\":\"Pages 259-274\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0921-8777(01)00097-0\",\"citationCount\":\"78\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation Research/DNA Repair\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921877701000970\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research/DNA Repair","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921877701000970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ultraviolet radiation alters the phosphorylation of RNA polymerase II large subunit and accelerates its proteasome-dependent degradation
It has been shown that ultraviolet (UV) radiation induces the ubiquitination of the large subunit of RNA polymerase II (RNAP II-LS) as well as its proteasomal degradation. Studies in mammalian cells have indicated that highly phosphorylated forms of RNAP II-LS are preferentially ubiquitinated, but studies in Saccharomyces cerevisiae have provided evidence that unphosphorylated RNAP II-LS is an equally suitable substrate. In the present study, an antibody (ARNA-3) that recognizes all forms of RNAP II-LS, regardless of the phosphorylation status of its C-terminal domain (CTD), was utilized to evaluate the degradation of total cellular RNAP II-LS in human fibroblasts under basal conditions or after UV-C (10 J/m2) irradiation. It was found that UV radiation rapidly shifted the phosphorylation profile of RNAP II-LS from a mixture of dephosphorylated and phosphorylated forms to entirely more phosphorylated forms. This shift in phosphorylation status was not blocked by pharmacologic inhibition of either the ERK or p38 pathways, both of which have been implicated in the cellular UV response. In addition to shifting the phosphorylation profile, UV radiation led to net degradation of total RNAP II-LS. UV-induced degradation of RNAP II-LS was also greatly reduced in the presence of the transcriptional and CTD kinase inhibitor DRB. Using a panel of protease inhibitors, it was shown that the bulk of UV-induced degradation is proteasome-dependent. However, the UV-induced loss of hypophosphorylated RNAP II-LS was proteasome-independent. Lastly, UV radiation induced a similar shift to all hyperphosphorylated RNAP II-LS in Cockayne syndrome (CS) cells of complementation groups A or B (CSA or CSB) when compared to appropriate controls. The UV-induced degradation rates of RNAP II-LS were not significantly altered when comparing CSA or CSB to repair competent control cells. The implications for the cellular UV response are discussed.