{"title":"降低对n -乙基-n -亚硝基源诱导的成年C.B-17小鼠胸腺淋巴瘤的敏感性和ras突变谱","authors":"Mayumi Nishimura , Shizuko Kakinuma , Shigeharu Wakana , Aya Mukaigawara , Kazuei Mita , Toshihiko Sado , Toshiaki Ogiu , Yoshiya Shimada","doi":"10.1016/S0921-8777(01)00098-2","DOIUrl":null,"url":null,"abstract":"<div><p><em>Scid</em> mice are defective in the ability to repair DNA double strand breaks and, as a consequence, their cells are radiosensitive. Further, they have been shown to be prone to develop thymic lymphomas (TLs) after small doses of ionizing radiation. Little is known, however, on the role of <em>scid</em> mutation in chemical carcinogenesis. To determine if <em>scid</em> mutation increased predisposition to chemical carcinogenesis, we examined both the susceptibility of <em>scid</em> mice to <em>N</em>-ethyl-<em>N</em>-nitrosourea (ENU)-induced lymphomagenesis and the involvement of <em>ras</em><span> gene activation. Adult female mice at 8 weeks of age were given ENU in their drinking water at 400</span> <!-->ppm for 2–10 weeks. Contrary to expectations, we observed a two to three-fold reduction in TL development in the <em>scid</em> mice. The highest incidence was achieved by ENU treatment for 8 weeks for <em>scid</em> and wild-type C.B-17 mice, of 42 and 85%, respectively (<em>P</em><0.05). We investigated whether this was attributable to the usage of the <em>ras</em> mutation pathway. There was, however, no significant difference in the frequency and spectrum of K-<em>ras</em> mutation between the <em>scid</em> and wild-type C.B-17 mice. Most of the K-<em>ras</em><span> mutations were either GGT to GAT transition in codon 12 (11/23: 48%) or CAA to CCA transversion in codon 61 (8/23: 35%) that was independent of </span><em>scid</em> background. The incidence of N-<em>ras</em> mutation was very low. These results indicate that <em>scid</em> mice are less susceptible to ENU-induced lymphomagenesis and <em>ras</em><span> gene mutation frequently occurs in both </span><em>scid</em> and wild-type C.B-17 mice.</p></div>","PeriodicalId":100935,"journal":{"name":"Mutation Research/DNA Repair","volume":"486 4","pages":"Pages 275-283"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0921-8777(01)00098-2","citationCount":"5","resultStr":"{\"title\":\"Reduced sensitivity to and ras mutation spectrum of N-ethyl-N-nitrosourea-induced thymic lymphomas in adult C.B-17 scid mice\",\"authors\":\"Mayumi Nishimura , Shizuko Kakinuma , Shigeharu Wakana , Aya Mukaigawara , Kazuei Mita , Toshihiko Sado , Toshiaki Ogiu , Yoshiya Shimada\",\"doi\":\"10.1016/S0921-8777(01)00098-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Scid</em> mice are defective in the ability to repair DNA double strand breaks and, as a consequence, their cells are radiosensitive. Further, they have been shown to be prone to develop thymic lymphomas (TLs) after small doses of ionizing radiation. Little is known, however, on the role of <em>scid</em> mutation in chemical carcinogenesis. To determine if <em>scid</em> mutation increased predisposition to chemical carcinogenesis, we examined both the susceptibility of <em>scid</em> mice to <em>N</em>-ethyl-<em>N</em>-nitrosourea (ENU)-induced lymphomagenesis and the involvement of <em>ras</em><span> gene activation. Adult female mice at 8 weeks of age were given ENU in their drinking water at 400</span> <!-->ppm for 2–10 weeks. Contrary to expectations, we observed a two to three-fold reduction in TL development in the <em>scid</em> mice. The highest incidence was achieved by ENU treatment for 8 weeks for <em>scid</em> and wild-type C.B-17 mice, of 42 and 85%, respectively (<em>P</em><0.05). We investigated whether this was attributable to the usage of the <em>ras</em> mutation pathway. There was, however, no significant difference in the frequency and spectrum of K-<em>ras</em> mutation between the <em>scid</em> and wild-type C.B-17 mice. Most of the K-<em>ras</em><span> mutations were either GGT to GAT transition in codon 12 (11/23: 48%) or CAA to CCA transversion in codon 61 (8/23: 35%) that was independent of </span><em>scid</em> background. The incidence of N-<em>ras</em> mutation was very low. These results indicate that <em>scid</em> mice are less susceptible to ENU-induced lymphomagenesis and <em>ras</em><span> gene mutation frequently occurs in both </span><em>scid</em> and wild-type C.B-17 mice.</p></div>\",\"PeriodicalId\":100935,\"journal\":{\"name\":\"Mutation Research/DNA Repair\",\"volume\":\"486 4\",\"pages\":\"Pages 275-283\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0921-8777(01)00098-2\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation Research/DNA Repair\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921877701000982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research/DNA Repair","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921877701000982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
摘要
Scid小鼠在修复DNA双链断裂的能力上存在缺陷,因此,它们的细胞对辐射敏感。此外,他们已经被证明在小剂量的电离辐射后容易患上胸腺淋巴瘤(TLs)。然而,scid突变在化学致癌中的作用知之甚少。为了确定scid突变是否会增加化学致癌的易感性,我们检测了scid小鼠对n -乙基-n -亚硝基脲(ENU)诱导的淋巴瘤发生的易感性和ras基因激活的参与。8周龄的成年雌性小鼠在400ppm的饮用水中给予ENU 2-10周。与预期相反,我们观察到scid小鼠的TL发育减少了两到三倍。小鼠和野生型c - b -17小鼠经ENU治疗8周后发病率最高,分别为42%和85% (P<0.05)。我们调查了这是否归因于ras突变途径的使用。然而,小鼠与野生型c - b -17小鼠在K-ras突变的频率和频谱上没有显著差异。大多数K-ras突变为密码子12的GGT到GAT的转换(11/ 23:48 %)或密码子61的CAA到CCA的转换(8/ 23:35 %),与scid背景无关。N-ras突变发生率很低。这些结果表明,scid小鼠对enu诱导的淋巴瘤的易感性较低,ras基因突变在scid小鼠和野生型c - b -17小鼠中都很常见。
Reduced sensitivity to and ras mutation spectrum of N-ethyl-N-nitrosourea-induced thymic lymphomas in adult C.B-17 scid mice
Scid mice are defective in the ability to repair DNA double strand breaks and, as a consequence, their cells are radiosensitive. Further, they have been shown to be prone to develop thymic lymphomas (TLs) after small doses of ionizing radiation. Little is known, however, on the role of scid mutation in chemical carcinogenesis. To determine if scid mutation increased predisposition to chemical carcinogenesis, we examined both the susceptibility of scid mice to N-ethyl-N-nitrosourea (ENU)-induced lymphomagenesis and the involvement of ras gene activation. Adult female mice at 8 weeks of age were given ENU in their drinking water at 400 ppm for 2–10 weeks. Contrary to expectations, we observed a two to three-fold reduction in TL development in the scid mice. The highest incidence was achieved by ENU treatment for 8 weeks for scid and wild-type C.B-17 mice, of 42 and 85%, respectively (P<0.05). We investigated whether this was attributable to the usage of the ras mutation pathway. There was, however, no significant difference in the frequency and spectrum of K-ras mutation between the scid and wild-type C.B-17 mice. Most of the K-ras mutations were either GGT to GAT transition in codon 12 (11/23: 48%) or CAA to CCA transversion in codon 61 (8/23: 35%) that was independent of scid background. The incidence of N-ras mutation was very low. These results indicate that scid mice are less susceptible to ENU-induced lymphomagenesis and ras gene mutation frequently occurs in both scid and wild-type C.B-17 mice.