肌腱和韧带修复功能组织工程的发展

IF 3.1 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Tissue Engineering and Regenerative Medicine Pub Date : 2022-11-17 DOI:10.1002/term.3360
David L. Butler
{"title":"肌腱和韧带修复功能组织工程的发展","authors":"David L. Butler","doi":"10.1002/term.3360","DOIUrl":null,"url":null,"abstract":"<p>This review paper is motivated by a Back-to-Basics presentation given by the author at the 2022 Orthopaedic Research Society meeting in Tampa, Florida. I was tasked with providing a brief history of research leading up to the introduction of functional tissue engineering (FTE) for tendon and ligament repair. Beginning in the 1970s, this timeline focused on two common orthopedic soft tissue problems, anterior cruciate ligament ruptures in the knee and supraspinatus tendon injuries in the shoulder. Historic changes in the field over the next 5 decades revealed a transformation from a focus more on mechanics (called “bioMECHANICS”) on a larger (tissue) scale to a more recent focus on biology (called “mechanoBIOLOGY”) on a smaller (cellular and molecular) scale. Early studies by surgeons and engineers revealed the importance of testing conditions for ligaments and tendons (e.g., high strain rates while avoiding subject disuse and immobility) and the need to measure in vivo forces in these tissues. But any true tissue engineering and regeneration in these early decades was limited more to the use of auto-, allo- and xenografts than actual generation of stimulated cell-scaffold constructs in culture. It was only after the discovery of tissue engineering in 1988 and the recognition of frequent rotator cuff injuries in the early 1990s, that biologists joined surgeons and engineers to discover mechanical and biological testing criteria for FTE. This review emphasizes the need for broader and more inclusive collaborations by surgeons, biologists and engineers in the short term with involvement of those in biomaterials, manufacturing, and regulation of new products in the longer term.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Evolution of functional tissue engineering for tendon and ligament repair\",\"authors\":\"David L. Butler\",\"doi\":\"10.1002/term.3360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This review paper is motivated by a Back-to-Basics presentation given by the author at the 2022 Orthopaedic Research Society meeting in Tampa, Florida. I was tasked with providing a brief history of research leading up to the introduction of functional tissue engineering (FTE) for tendon and ligament repair. Beginning in the 1970s, this timeline focused on two common orthopedic soft tissue problems, anterior cruciate ligament ruptures in the knee and supraspinatus tendon injuries in the shoulder. Historic changes in the field over the next 5 decades revealed a transformation from a focus more on mechanics (called “bioMECHANICS”) on a larger (tissue) scale to a more recent focus on biology (called “mechanoBIOLOGY”) on a smaller (cellular and molecular) scale. Early studies by surgeons and engineers revealed the importance of testing conditions for ligaments and tendons (e.g., high strain rates while avoiding subject disuse and immobility) and the need to measure in vivo forces in these tissues. But any true tissue engineering and regeneration in these early decades was limited more to the use of auto-, allo- and xenografts than actual generation of stimulated cell-scaffold constructs in culture. It was only after the discovery of tissue engineering in 1988 and the recognition of frequent rotator cuff injuries in the early 1990s, that biologists joined surgeons and engineers to discover mechanical and biological testing criteria for FTE. This review emphasizes the need for broader and more inclusive collaborations by surgeons, biologists and engineers in the short term with involvement of those in biomaterials, manufacturing, and regulation of new products in the longer term.</p>\",\"PeriodicalId\":202,\"journal\":{\"name\":\"Journal of Tissue Engineering and Regenerative Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Tissue Engineering and Regenerative Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/term.3360\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering and Regenerative Medicine","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/term.3360","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

这篇综述论文的动机是作者在佛罗里达州坦帕市举行的2022年骨科研究学会会议上所做的回归基础的演讲。我的任务是简要介绍肌腱和韧带修复的功能性组织工程(FTE)的研究历史。从20世纪70年代开始,这个时间线集中在两个常见的骨科软组织问题,膝关节前交叉韧带断裂和肩部冈上肌腱损伤。在接下来的50年里,该领域的历史性变化揭示了一个转变,从更多地关注更大(组织)尺度上的力学(称为“生物力学”)到最近更关注更小(细胞和分子)尺度上的生物学(称为“机械生物学”)。外科医生和工程师的早期研究揭示了测试韧带和肌腱条件的重要性(例如,在避免受试者废弃和不动的情况下,高应变率),以及测量这些组织中的体内力的必要性。但是,在最初的几十年里,任何真正的组织工程和再生都更多地局限于使用自体、同种和异种移植物,而不是在培养中实际产生受刺激的细胞支架结构。直到1988年组织工程学被发现,以及20世纪90年代初对频繁发生的肩袖损伤的认识,生物学家才加入外科医生和工程师的行列,发现了FTE的力学和生物学检测标准。这篇综述强调了外科医生、生物学家和工程师在短期内需要更广泛和更具包容性的合作,而在长期内则需要生物材料、制造和新产品监管方面的参与。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolution of functional tissue engineering for tendon and ligament repair

This review paper is motivated by a Back-to-Basics presentation given by the author at the 2022 Orthopaedic Research Society meeting in Tampa, Florida. I was tasked with providing a brief history of research leading up to the introduction of functional tissue engineering (FTE) for tendon and ligament repair. Beginning in the 1970s, this timeline focused on two common orthopedic soft tissue problems, anterior cruciate ligament ruptures in the knee and supraspinatus tendon injuries in the shoulder. Historic changes in the field over the next 5 decades revealed a transformation from a focus more on mechanics (called “bioMECHANICS”) on a larger (tissue) scale to a more recent focus on biology (called “mechanoBIOLOGY”) on a smaller (cellular and molecular) scale. Early studies by surgeons and engineers revealed the importance of testing conditions for ligaments and tendons (e.g., high strain rates while avoiding subject disuse and immobility) and the need to measure in vivo forces in these tissues. But any true tissue engineering and regeneration in these early decades was limited more to the use of auto-, allo- and xenografts than actual generation of stimulated cell-scaffold constructs in culture. It was only after the discovery of tissue engineering in 1988 and the recognition of frequent rotator cuff injuries in the early 1990s, that biologists joined surgeons and engineers to discover mechanical and biological testing criteria for FTE. This review emphasizes the need for broader and more inclusive collaborations by surgeons, biologists and engineers in the short term with involvement of those in biomaterials, manufacturing, and regulation of new products in the longer term.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
3.00%
发文量
97
审稿时长
4-8 weeks
期刊介绍: Journal of Tissue Engineering and Regenerative Medicine publishes rapidly and rigorously peer-reviewed research papers, reviews, clinical case reports, perspectives, and short communications on topics relevant to the development of therapeutic approaches which combine stem or progenitor cells, biomaterials and scaffolds, growth factors and other bioactive agents, and their respective constructs. All papers should deal with research that has a direct or potential impact on the development of novel clinical approaches for the regeneration or repair of tissues and organs. The journal is multidisciplinary, covering the combination of the principles of life sciences and engineering in efforts to advance medicine and clinical strategies. The journal focuses on the use of cells, materials, and biochemical/mechanical factors in the development of biological functional substitutes that restore, maintain, or improve tissue or organ function. The journal publishes research on any tissue or organ and covers all key aspects of the field, including the development of new biomaterials and processing of scaffolds; the use of different types of cells (mainly stem and progenitor cells) and their culture in specific bioreactors; studies in relevant animal models; and clinical trials in human patients performed under strict regulatory and ethical frameworks. Manuscripts describing the use of advanced methods for the characterization of engineered tissues are also of special interest to the journal readership.
期刊最新文献
Decellularisation and Characterisation of Porcine Pleura as Bioscaffolds in Tissue Engineering Harnessing the Regenerative Potential of Fetal Mesenchymal Stem Cells and Endothelial Colony-Forming Cells in the Biofabrication of Tissue-Engineered Vascular Grafts (TEVGs) Endothelial Cell-Derived Exosomes Inhibit Osteoblast Apoptosis and Steroid-Induced Necrosis of Femoral Head Progression by Activating the PI3K/Akt/Bcl-2 Pathway Chromatin Condensation Delays Senescence in Human Mesenchymal Stem Cells by Safeguarding Nuclear Damages during In Vitro Expansion Targeting of C-ROS-1 Activity Using a Controlled Release Carrier to Treat Craniosynostosis in a Preclinical Model of Saethre-Chotzen Syndrome
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1