非结构动力网格三维欧拉方程非定常气动计算

IF 1.4 4区 工程技术 Q2 ENGINEERING, AEROSPACE Aeronautical Journal Pub Date : 2002-05-01 DOI:10.1017/S0001924000013105
K. P. Sinhamahapatr
{"title":"非结构动力网格三维欧拉方程非定常气动计算","authors":"K. P. Sinhamahapatr","doi":"10.1017/S0001924000013105","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents an algorithm to solve the three-dimensional unsteady Euler equations on unstructured tetrahedral meshes using a dynamic mesh algorithm. The driving algorithm is an upwind biased implicit second order accurate cell-centered finite volume scheme. The spatial discretisation technique involves a naturally dissipative flux-split approach that accounts for the local wave propagation characteristics of the flow and captures shock waves sharply. A continuously differentiable flux limiter has been employed to eliminate the spurious oscillations near shock waves, generally arising in calculations involving upwind biased schemes. The temporal discretisation is also second order accurate and uses a Newton linearisation for unsteady calculations. To calculate time dependent flows a dynamic mesh algorithm has been implemented in which the mesh is moved to conform to the instantaneous position of the body by modelling each edge of each cell by a spring. The paper presents a description of the solver and the grid movement algorithm along with results and comparison that assess their capabilities.","PeriodicalId":50846,"journal":{"name":"Aeronautical Journal","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2002-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Unsteady aerodynamic calculations using three-dimensional Euler equations on unstructured dynamic grids\",\"authors\":\"K. P. Sinhamahapatr\",\"doi\":\"10.1017/S0001924000013105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper presents an algorithm to solve the three-dimensional unsteady Euler equations on unstructured tetrahedral meshes using a dynamic mesh algorithm. The driving algorithm is an upwind biased implicit second order accurate cell-centered finite volume scheme. The spatial discretisation technique involves a naturally dissipative flux-split approach that accounts for the local wave propagation characteristics of the flow and captures shock waves sharply. A continuously differentiable flux limiter has been employed to eliminate the spurious oscillations near shock waves, generally arising in calculations involving upwind biased schemes. The temporal discretisation is also second order accurate and uses a Newton linearisation for unsteady calculations. To calculate time dependent flows a dynamic mesh algorithm has been implemented in which the mesh is moved to conform to the instantaneous position of the body by modelling each edge of each cell by a spring. The paper presents a description of the solver and the grid movement algorithm along with results and comparison that assess their capabilities.\",\"PeriodicalId\":50846,\"journal\":{\"name\":\"Aeronautical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2002-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aeronautical Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/S0001924000013105\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aeronautical Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0001924000013105","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 2

摘要

摘要提出了一种用动态网格法求解非结构化四面体网格三维非定常欧拉方程的算法。驱动算法是一种迎风偏置隐式二阶精确胞心有限体积格式。空间离散技术涉及一种自然耗散的通量分裂方法,该方法考虑了流动的局部波传播特性,并迅速捕获激波。采用连续可微通量限制器来消除激波附近的杂散振荡,这种振荡通常出现在涉及逆风偏置格式的计算中。时间离散化也是二阶精度,并使用牛顿线性化非定常计算。为了计算时间相关流,实现了一种动态网格算法,该算法通过弹簧对每个单元的每个边缘进行建模,使网格移动以符合身体的瞬时位置。本文介绍了求解器和网格移动算法的描述,并给出了评估其性能的结果和比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unsteady aerodynamic calculations using three-dimensional Euler equations on unstructured dynamic grids
Abstract This paper presents an algorithm to solve the three-dimensional unsteady Euler equations on unstructured tetrahedral meshes using a dynamic mesh algorithm. The driving algorithm is an upwind biased implicit second order accurate cell-centered finite volume scheme. The spatial discretisation technique involves a naturally dissipative flux-split approach that accounts for the local wave propagation characteristics of the flow and captures shock waves sharply. A continuously differentiable flux limiter has been employed to eliminate the spurious oscillations near shock waves, generally arising in calculations involving upwind biased schemes. The temporal discretisation is also second order accurate and uses a Newton linearisation for unsteady calculations. To calculate time dependent flows a dynamic mesh algorithm has been implemented in which the mesh is moved to conform to the instantaneous position of the body by modelling each edge of each cell by a spring. The paper presents a description of the solver and the grid movement algorithm along with results and comparison that assess their capabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aeronautical Journal
Aeronautical Journal 工程技术-工程:宇航
CiteScore
3.70
自引率
14.30%
发文量
86
审稿时长
6-12 weeks
期刊介绍: The Aeronautical Journal contains original papers on all aspects of research, design and development, construction and operation of aircraft and space vehicles. Papers are therefore solicited on all aspects of research, design and development, construction and operation of aircraft and space vehicles. Papers are also welcomed which review, comprehensively, the results of recent research developments in any of the above topics.
期刊最新文献
Gas Turbines: Internal Flow Systems Modeling B. K. Sultanian, Cambridge University Press, University Printing House, Shaftesbury Road, Cambridge CB2 8BS, UK. 2018. xviii; 356pp. Illustrated £74.99. ISBN 978-1-107-17009-4. Mechanical Vibrations: Theory and Application to Structural Dynamics – 3rd Edition M. Geradin and D. J. Rixen John Wiley and Sons, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK. 2015. 598pp. Illustrated. £83.95. ISBN 978-1-118-90020 8. Experimental research and numerical simulations of thrust vector control nozzle flow Flight Dynamics Principles: a Linear Systems Approach to Aircraft Stability and Control - Third edition M. V. Cook Elsevier Butterworth-Heinemann, The Boulevard, Langford Lane, Oxford, OX5 1GB, UK. 2013. 575pp. Illustrated. £49.99. ISBN 978-0-08-098242-7. Structural Engineering: a Very Short Introduction D. Blockley Oxford University Press, Oxford, UK, 2014. 129pp. Illustrated. £7.99. ISBN 978-0-19-967193-9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1