在二元相互作用中检测生理同步的方法学进展

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2013-01-01 DOI:10.1027/1614-2241/A000053
M. McAssey, J. Helm, F. Hsieh, D. Sbarra, E. Ferrer
{"title":"在二元相互作用中检测生理同步的方法学进展","authors":"M. McAssey, J. Helm, F. Hsieh, D. Sbarra, E. Ferrer","doi":"10.1027/1614-2241/A000053","DOIUrl":null,"url":null,"abstract":"A defining feature of many physiological systems is their synchrony and reciprocal influence. An important challenge, however, is how to measure such features. This paper presents two new approaches for identifying synchrony between the physiological signals of individuals in dyads. The approaches are adaptations of two recently-developed techniques, depending on the nature of the physiological time series. For respiration and thoracic impedance, signals that are measured continuously, we use Empirical Mode Decomposition to extract the low-frequency components of a nonstationary signal, which carry the signal’s trend. We then compute the maximum cross-correlation between the trends of two signals within consecutive overlapping time windows of fixed width throughout each of a number of experimental tasks, and identify the proportion of large values of this measure occurring during each task. For heart rate, which is output discretely, we use a structural linear model that takes into account heteroscedastic...","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"Methodological Advances for Detecting Physiological Synchrony During Dyadic Interactions\",\"authors\":\"M. McAssey, J. Helm, F. Hsieh, D. Sbarra, E. Ferrer\",\"doi\":\"10.1027/1614-2241/A000053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A defining feature of many physiological systems is their synchrony and reciprocal influence. An important challenge, however, is how to measure such features. This paper presents two new approaches for identifying synchrony between the physiological signals of individuals in dyads. The approaches are adaptations of two recently-developed techniques, depending on the nature of the physiological time series. For respiration and thoracic impedance, signals that are measured continuously, we use Empirical Mode Decomposition to extract the low-frequency components of a nonstationary signal, which carry the signal’s trend. We then compute the maximum cross-correlation between the trends of two signals within consecutive overlapping time windows of fixed width throughout each of a number of experimental tasks, and identify the proportion of large values of this measure occurring during each task. For heart rate, which is output discretely, we use a structural linear model that takes into account heteroscedastic...\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1027/1614-2241/A000053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1027/1614-2241/A000053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 46

摘要

许多生理系统的一个决定性特征是它们的同步性和相互影响。然而,一个重要的挑战是如何衡量这些特征。本文提出了两种识别双体个体生理信号同步性的新方法。根据生理时间序列的性质,这些方法是最近开发的两种技术的改编。对于连续测量的呼吸和胸阻抗信号,我们使用经验模态分解来提取非平稳信号的低频分量,这些分量携带信号的趋势。然后,我们计算在多个实验任务中固定宽度的连续重叠时间窗内两个信号趋势之间的最大相互关系,并确定在每个任务中出现该度量的大值的比例。对于离散输出的心率,我们使用考虑异方差的结构线性模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Methodological Advances for Detecting Physiological Synchrony During Dyadic Interactions
A defining feature of many physiological systems is their synchrony and reciprocal influence. An important challenge, however, is how to measure such features. This paper presents two new approaches for identifying synchrony between the physiological signals of individuals in dyads. The approaches are adaptations of two recently-developed techniques, depending on the nature of the physiological time series. For respiration and thoracic impedance, signals that are measured continuously, we use Empirical Mode Decomposition to extract the low-frequency components of a nonstationary signal, which carry the signal’s trend. We then compute the maximum cross-correlation between the trends of two signals within consecutive overlapping time windows of fixed width throughout each of a number of experimental tasks, and identify the proportion of large values of this measure occurring during each task. For heart rate, which is output discretely, we use a structural linear model that takes into account heteroscedastic...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1