{"title":"一种具有相关残差的层次贝叶斯模型用于研究密集纵向数据设置的稳定性和变化","authors":"F. Gasimova, A. Robitzsch, O. Wilhelm, G. Hülür","doi":"10.1027/1614-2241/A000083","DOIUrl":null,"url":null,"abstract":"The present paper’s focus is the modeling of interindividual and intraindividual variability in longitudinal data. We propose a hierarchical Bayesian model with correlated residuals, employing an autoregressive parameter AR(1) for focusing on intraindividual variability. The hierarchical model possesses four individual random effects: intercept, slope, variability, and autocorrelation. The performance of the proposed Bayesian estimation is investigated in simulated longitudinal data with three different sample sizes (N = 100, 200, 500) and three different numbers of measurement points (T = 10, 20, 40). The initial simulation values are selected according to the results of the first 20 measurement occasions from a longitudinal study on working memory capacity in 9th graders. Within this simulation study, we investigate the root mean square error (RMSE), bias, relative percentage bias, and the 90% coverage probability of parameter estimates. Results indicate that more accurate estimates are associated with ...","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Hierarchical Bayesian Model With Correlated Residuals for Investigating Stability and Change in Intensive Longitudinal Data Settings\",\"authors\":\"F. Gasimova, A. Robitzsch, O. Wilhelm, G. Hülür\",\"doi\":\"10.1027/1614-2241/A000083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper’s focus is the modeling of interindividual and intraindividual variability in longitudinal data. We propose a hierarchical Bayesian model with correlated residuals, employing an autoregressive parameter AR(1) for focusing on intraindividual variability. The hierarchical model possesses four individual random effects: intercept, slope, variability, and autocorrelation. The performance of the proposed Bayesian estimation is investigated in simulated longitudinal data with three different sample sizes (N = 100, 200, 500) and three different numbers of measurement points (T = 10, 20, 40). The initial simulation values are selected according to the results of the first 20 measurement occasions from a longitudinal study on working memory capacity in 9th graders. Within this simulation study, we investigate the root mean square error (RMSE), bias, relative percentage bias, and the 90% coverage probability of parameter estimates. Results indicate that more accurate estimates are associated with ...\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1027/1614-2241/A000083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1027/1614-2241/A000083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A Hierarchical Bayesian Model With Correlated Residuals for Investigating Stability and Change in Intensive Longitudinal Data Settings
The present paper’s focus is the modeling of interindividual and intraindividual variability in longitudinal data. We propose a hierarchical Bayesian model with correlated residuals, employing an autoregressive parameter AR(1) for focusing on intraindividual variability. The hierarchical model possesses four individual random effects: intercept, slope, variability, and autocorrelation. The performance of the proposed Bayesian estimation is investigated in simulated longitudinal data with three different sample sizes (N = 100, 200, 500) and three different numbers of measurement points (T = 10, 20, 40). The initial simulation values are selected according to the results of the first 20 measurement occasions from a longitudinal study on working memory capacity in 9th graders. Within this simulation study, we investigate the root mean square error (RMSE), bias, relative percentage bias, and the 90% coverage probability of parameter estimates. Results indicate that more accurate estimates are associated with ...