当渐近性不成立时,评估潜在类分析中的模型拟合

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2015-01-01 DOI:10.1027/1614-2241/A000093
Geert H. van Kollenburg, J. Mulder, J. Vermunt
{"title":"当渐近性不成立时,评估潜在类分析中的模型拟合","authors":"Geert H. van Kollenburg, J. Mulder, J. Vermunt","doi":"10.1027/1614-2241/A000093","DOIUrl":null,"url":null,"abstract":"The application of latent class (LC) analysis involves evaluating the LC model using goodness-of-fit statistics. To assess the misfit of a specified model, say with the Pearson chi-squared statistic, a p-value can be obtained using an asymptotic reference distribution. However, asymptotic p-values are not valid when the sample size is not large and/or the analyzed contingency table is sparse. Another problem is that for various other conceivable global and local fit measures, asymptotic distributions are not readily available. An alternative way to obtain the p-value for the statistic of interest is by constructing its empirical reference distribution using resampling techniques such as the parametric bootstrap or the posterior predictive check (PPC). In the current paper, we show how to apply the parametric bootstrap and two versions of the PPC to obtain empirical p-values for a number of commonly used global and local fit statistics within the context of LC analysis. The main difference between the PPC ...","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Assessing Model Fit in Latent Class Analysis When Asymptotics Do Not Hold\",\"authors\":\"Geert H. van Kollenburg, J. Mulder, J. Vermunt\",\"doi\":\"10.1027/1614-2241/A000093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of latent class (LC) analysis involves evaluating the LC model using goodness-of-fit statistics. To assess the misfit of a specified model, say with the Pearson chi-squared statistic, a p-value can be obtained using an asymptotic reference distribution. However, asymptotic p-values are not valid when the sample size is not large and/or the analyzed contingency table is sparse. Another problem is that for various other conceivable global and local fit measures, asymptotic distributions are not readily available. An alternative way to obtain the p-value for the statistic of interest is by constructing its empirical reference distribution using resampling techniques such as the parametric bootstrap or the posterior predictive check (PPC). In the current paper, we show how to apply the parametric bootstrap and two versions of the PPC to obtain empirical p-values for a number of commonly used global and local fit statistics within the context of LC analysis. The main difference between the PPC ...\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1027/1614-2241/A000093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1027/1614-2241/A000093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 27

摘要

潜在类(LC)分析的应用包括使用拟合优度统计来评估LC模型。为了评估特定模型的不拟合,例如使用皮尔逊卡方统计量,可以使用渐近参考分布获得p值。然而,当样本量不大和/或分析的列联表稀疏时,渐近p值是无效的。另一个问题是,对于各种其他可想象的全局和局部拟合度量,渐近分布并不容易获得。获得感兴趣统计量的p值的另一种方法是通过使用重采样技术(如参数自举或后验预测检查(PPC))构建其经验参考分布。在本文中,我们展示了如何应用参数bootstrap和两个版本的PPC来获得LC分析背景下一些常用的全局和局部拟合统计的经验p值。PPC的主要区别是…
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessing Model Fit in Latent Class Analysis When Asymptotics Do Not Hold
The application of latent class (LC) analysis involves evaluating the LC model using goodness-of-fit statistics. To assess the misfit of a specified model, say with the Pearson chi-squared statistic, a p-value can be obtained using an asymptotic reference distribution. However, asymptotic p-values are not valid when the sample size is not large and/or the analyzed contingency table is sparse. Another problem is that for various other conceivable global and local fit measures, asymptotic distributions are not readily available. An alternative way to obtain the p-value for the statistic of interest is by constructing its empirical reference distribution using resampling techniques such as the parametric bootstrap or the posterior predictive check (PPC). In the current paper, we show how to apply the parametric bootstrap and two versions of the PPC to obtain empirical p-values for a number of commonly used global and local fit statistics within the context of LC analysis. The main difference between the PPC ...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1