{"title":"深部热疗的数学癌症治疗计划*","authors":"P. Deuflhard, A. Schiela, M. Weiser","doi":"10.1017/S0962492912000049","DOIUrl":null,"url":null,"abstract":"This paper surveys the mathematics required for a typically challenging problem from computational medicine: cancer therapy planning in deep regional hyperthermia. In the course of many years of close cooperation with clinics, the medical problem has given rise to many subtle mathematical problems, some of which were unsolved when the project started. Efficiency of numerical algorithms, i.e., computational speed and monitored reliability, plays a decisive role in the medical treatment. Off-the-shelf software had turned out to be insufficient to meet the requirements of medicine. Instead, new mathematical theory as well as new numerical algorithms had to be developed. In order to make our algorithms useful in the clinical environment, new visualization software, i.e., a ‘virtual lab’, including three-dimensional geometry processing of individual virtual patients, had to be designed and implemented. Moreover, before the problems could be attacked by numerical algorithms, careful mathematical modelling had to be done. Finally, parameter identification and constrained optimization for the PDEs had to be newly analysed and realized over the individual patient's geometry. Our new techniques had an impact on the specificity of the treatment of individual patients and on the construction of an improved hyperthermia applicator.","PeriodicalId":48863,"journal":{"name":"Acta Numerica","volume":"21 1","pages":"307 - 378"},"PeriodicalIF":16.3000,"publicationDate":"2012-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0962492912000049","citationCount":"21","resultStr":"{\"title\":\"Mathematical cancer therapy planning in deep regional hyperthermia*\",\"authors\":\"P. Deuflhard, A. Schiela, M. Weiser\",\"doi\":\"10.1017/S0962492912000049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper surveys the mathematics required for a typically challenging problem from computational medicine: cancer therapy planning in deep regional hyperthermia. In the course of many years of close cooperation with clinics, the medical problem has given rise to many subtle mathematical problems, some of which were unsolved when the project started. Efficiency of numerical algorithms, i.e., computational speed and monitored reliability, plays a decisive role in the medical treatment. Off-the-shelf software had turned out to be insufficient to meet the requirements of medicine. Instead, new mathematical theory as well as new numerical algorithms had to be developed. In order to make our algorithms useful in the clinical environment, new visualization software, i.e., a ‘virtual lab’, including three-dimensional geometry processing of individual virtual patients, had to be designed and implemented. Moreover, before the problems could be attacked by numerical algorithms, careful mathematical modelling had to be done. Finally, parameter identification and constrained optimization for the PDEs had to be newly analysed and realized over the individual patient's geometry. Our new techniques had an impact on the specificity of the treatment of individual patients and on the construction of an improved hyperthermia applicator.\",\"PeriodicalId\":48863,\"journal\":{\"name\":\"Acta Numerica\",\"volume\":\"21 1\",\"pages\":\"307 - 378\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2012-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/S0962492912000049\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Numerica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0962492912000049\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Numerica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0962492912000049","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Mathematical cancer therapy planning in deep regional hyperthermia*
This paper surveys the mathematics required for a typically challenging problem from computational medicine: cancer therapy planning in deep regional hyperthermia. In the course of many years of close cooperation with clinics, the medical problem has given rise to many subtle mathematical problems, some of which were unsolved when the project started. Efficiency of numerical algorithms, i.e., computational speed and monitored reliability, plays a decisive role in the medical treatment. Off-the-shelf software had turned out to be insufficient to meet the requirements of medicine. Instead, new mathematical theory as well as new numerical algorithms had to be developed. In order to make our algorithms useful in the clinical environment, new visualization software, i.e., a ‘virtual lab’, including three-dimensional geometry processing of individual virtual patients, had to be designed and implemented. Moreover, before the problems could be attacked by numerical algorithms, careful mathematical modelling had to be done. Finally, parameter identification and constrained optimization for the PDEs had to be newly analysed and realized over the individual patient's geometry. Our new techniques had an impact on the specificity of the treatment of individual patients and on the construction of an improved hyperthermia applicator.
期刊介绍:
Acta Numerica stands as the preeminent mathematics journal, ranking highest in both Impact Factor and MCQ metrics. This annual journal features a collection of review articles that showcase survey papers authored by prominent researchers in numerical analysis, scientific computing, and computational mathematics. These papers deliver comprehensive overviews of recent advances, offering state-of-the-art techniques and analyses.
Encompassing the entirety of numerical analysis, the articles are crafted in an accessible style, catering to researchers at all levels and serving as valuable teaching aids for advanced instruction. The broad subject areas covered include computational methods in linear algebra, optimization, ordinary and partial differential equations, approximation theory, stochastic analysis, nonlinear dynamical systems, as well as the application of computational techniques in science and engineering. Acta Numerica also delves into the mathematical theory underpinning numerical methods, making it a versatile and authoritative resource in the field of mathematics.