{"title":"数值张量微积分*","authors":"W. Hackbusch","doi":"10.1017/S0962492914000087","DOIUrl":null,"url":null,"abstract":"The usual large-scale discretizations are applied to two or three spatial dimensions. The standard methods fail for higher dimensions because the data size increases exponentially with the dimension. In the case of a regular grid with n grid points per direction, a spatial dimension d yields nd grid points. A grid function defined on such a grid is an example of a tensor of order d. Here, suitable tensor formats help, since they try to approximate these huge objects by a much smaller number of parameters, which increases only linearly in d. In this way, data of size nd = 10001000 can also be treated. This paper introduces the algebraic and analytical aspects of tensor spaces. The main part concerns the numerical representation of tensors and the numerical performance of tensor operations.","PeriodicalId":48863,"journal":{"name":"Acta Numerica","volume":"54 29 1","pages":"651 - 742"},"PeriodicalIF":16.3000,"publicationDate":"2014-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0962492914000087","citationCount":"59","resultStr":"{\"title\":\"Numerical tensor calculus*\",\"authors\":\"W. Hackbusch\",\"doi\":\"10.1017/S0962492914000087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The usual large-scale discretizations are applied to two or three spatial dimensions. The standard methods fail for higher dimensions because the data size increases exponentially with the dimension. In the case of a regular grid with n grid points per direction, a spatial dimension d yields nd grid points. A grid function defined on such a grid is an example of a tensor of order d. Here, suitable tensor formats help, since they try to approximate these huge objects by a much smaller number of parameters, which increases only linearly in d. In this way, data of size nd = 10001000 can also be treated. This paper introduces the algebraic and analytical aspects of tensor spaces. The main part concerns the numerical representation of tensors and the numerical performance of tensor operations.\",\"PeriodicalId\":48863,\"journal\":{\"name\":\"Acta Numerica\",\"volume\":\"54 29 1\",\"pages\":\"651 - 742\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2014-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/S0962492914000087\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Numerica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0962492914000087\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Numerica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0962492914000087","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The usual large-scale discretizations are applied to two or three spatial dimensions. The standard methods fail for higher dimensions because the data size increases exponentially with the dimension. In the case of a regular grid with n grid points per direction, a spatial dimension d yields nd grid points. A grid function defined on such a grid is an example of a tensor of order d. Here, suitable tensor formats help, since they try to approximate these huge objects by a much smaller number of parameters, which increases only linearly in d. In this way, data of size nd = 10001000 can also be treated. This paper introduces the algebraic and analytical aspects of tensor spaces. The main part concerns the numerical representation of tensors and the numerical performance of tensor operations.
期刊介绍:
Acta Numerica stands as the preeminent mathematics journal, ranking highest in both Impact Factor and MCQ metrics. This annual journal features a collection of review articles that showcase survey papers authored by prominent researchers in numerical analysis, scientific computing, and computational mathematics. These papers deliver comprehensive overviews of recent advances, offering state-of-the-art techniques and analyses.
Encompassing the entirety of numerical analysis, the articles are crafted in an accessible style, catering to researchers at all levels and serving as valuable teaching aids for advanced instruction. The broad subject areas covered include computational methods in linear algebra, optimization, ordinary and partial differential equations, approximation theory, stochastic analysis, nonlinear dynamical systems, as well as the application of computational techniques in science and engineering. Acta Numerica also delves into the mathematical theory underpinning numerical methods, making it a versatile and authoritative resource in the field of mathematics.