基于形态学和转录组学深入分析牛肠道类器官和类肠的关系

IF 3.1 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Tissue Engineering and Regenerative Medicine Pub Date : 2022-09-20 DOI:10.1002/term.3351
Juntao Zhang, Juanjuan Li, Penghui Yan, Laizeng He, Xuemei Zhang, Xiaolong Wang, Yake Shi, Lixin Deng, ZhiPing Zhang, Baoyu Zhao
{"title":"基于形态学和转录组学深入分析牛肠道类器官和类肠的关系","authors":"Juntao Zhang,&nbsp;Juanjuan Li,&nbsp;Penghui Yan,&nbsp;Laizeng He,&nbsp;Xuemei Zhang,&nbsp;Xiaolong Wang,&nbsp;Yake Shi,&nbsp;Lixin Deng,&nbsp;ZhiPing Zhang,&nbsp;Baoyu Zhao","doi":"10.1002/term.3351","DOIUrl":null,"url":null,"abstract":"<p>Intestinal organoids and enteroids as excellent models are miniaturized and simplified for studying intestinal physiological and pathological functions, drug screening, and regenerative medicine. Recently, the application demands for organoids and enteroids in organ development and nutrition metabolism, immune and cancer research increased. But there are few comparative studies on both of them, especially in immunity and metabolism, which is also conducive to further clarifying the role of crypt stem cells and stromal cells. In our study, “natural” organoids were obtained by tissue culture from fetal bovine jejunum and enteroids were successfully isolated and cultured from organoids without supplementing exogenous factors and Matrigel. These mini-guts displayed similar features to the intestine through immunohistochemistry and transmission electron microscopy. Organoid and enteroid were systematically compared based on the transcriptome. And some of the results were verified by qRT-PCR. Our results showed KDGs (Key driver genes) (e.g., SLC13A1, HOXA7, HOXA6, HOXA5, and HOXD4) of organoids enriched in signaling pathways related to organ development and morphology and metabolism. KDGs (e.g., IL-6, PTGS2, CDH1, JUN, and EGFR) of enteroid were involved in cancer, MAPK, and immune-related signaling pathways. To the Wnt signaling pathway, highly expressed genes in organoids, including RSPO2, NOTUM, WNT6, and RSPO3, supported the homeostasis of crypt stem cells. Enteroids highly expressed CTNNB1 and WNTs. In addition, we found that organoids and enteroids carried out different functions in immunity and metabolism due to different cell compositions. Therefore, it suggested organoid is more compatible and comprehensive, and enteroid is qualified for the research of immunity and cancer.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 11","pages":"1032-1046"},"PeriodicalIF":3.1000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"In-depth analysis of the relationship between bovine intestinal organoids and enteroids based on morphology and transcriptome\",\"authors\":\"Juntao Zhang,&nbsp;Juanjuan Li,&nbsp;Penghui Yan,&nbsp;Laizeng He,&nbsp;Xuemei Zhang,&nbsp;Xiaolong Wang,&nbsp;Yake Shi,&nbsp;Lixin Deng,&nbsp;ZhiPing Zhang,&nbsp;Baoyu Zhao\",\"doi\":\"10.1002/term.3351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Intestinal organoids and enteroids as excellent models are miniaturized and simplified for studying intestinal physiological and pathological functions, drug screening, and regenerative medicine. Recently, the application demands for organoids and enteroids in organ development and nutrition metabolism, immune and cancer research increased. But there are few comparative studies on both of them, especially in immunity and metabolism, which is also conducive to further clarifying the role of crypt stem cells and stromal cells. In our study, “natural” organoids were obtained by tissue culture from fetal bovine jejunum and enteroids were successfully isolated and cultured from organoids without supplementing exogenous factors and Matrigel. These mini-guts displayed similar features to the intestine through immunohistochemistry and transmission electron microscopy. Organoid and enteroid were systematically compared based on the transcriptome. And some of the results were verified by qRT-PCR. Our results showed KDGs (Key driver genes) (e.g., SLC13A1, HOXA7, HOXA6, HOXA5, and HOXD4) of organoids enriched in signaling pathways related to organ development and morphology and metabolism. KDGs (e.g., IL-6, PTGS2, CDH1, JUN, and EGFR) of enteroid were involved in cancer, MAPK, and immune-related signaling pathways. To the Wnt signaling pathway, highly expressed genes in organoids, including RSPO2, NOTUM, WNT6, and RSPO3, supported the homeostasis of crypt stem cells. Enteroids highly expressed CTNNB1 and WNTs. In addition, we found that organoids and enteroids carried out different functions in immunity and metabolism due to different cell compositions. Therefore, it suggested organoid is more compatible and comprehensive, and enteroid is qualified for the research of immunity and cancer.</p>\",\"PeriodicalId\":202,\"journal\":{\"name\":\"Journal of Tissue Engineering and Regenerative Medicine\",\"volume\":\"16 11\",\"pages\":\"1032-1046\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Tissue Engineering and Regenerative Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/term.3351\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering and Regenerative Medicine","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/term.3351","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 4

摘要

肠道类器官和类肠是研究肠道生理病理功能、药物筛选和再生医学的优良模型。近年来,类器官和类肠在器官发育、营养代谢、免疫和癌症研究中的应用需求日益增加。但两者的比较研究很少,特别是在免疫和代谢方面的比较研究,这也有利于进一步阐明隐窝干细胞和基质细胞的作用。在我们的研究中,从胎牛空肠组织培养获得了“天然”类器官,在不添加外源因子和Matrigel的情况下,成功地从类器官中分离和培养出了类肠。通过免疫组织化学和透射电镜,这些迷你肠道显示出与肠道相似的特征。基于转录组对类器官和类肠进行系统比较。部分结果经qRT-PCR验证。我们的研究结果显示,kdg(关键驱动基因)(如SLC13A1、HOXA7、HOXA6、HOXA5和HOXD4)在与器官发育、形态和代谢相关的信号通路中富集。肠样蛋白的kdg(如IL-6、PTGS2、CDH1、JUN和EGFR)参与癌症、MAPK和免疫相关的信号通路。对于Wnt信号通路,类器官中高表达的RSPO2、NOTUM、WNT6、RSPO3等基因支持隐窝干细胞的内稳态。肠样蛋白高度表达CTNNB1和wnt。此外,我们发现由于细胞组成不同,类器官和类肠在免疫和代谢方面的功能也不同。因此,提示类器官相容性和综合性更强,类肠道更适合用于免疫和肿瘤研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In-depth analysis of the relationship between bovine intestinal organoids and enteroids based on morphology and transcriptome

Intestinal organoids and enteroids as excellent models are miniaturized and simplified for studying intestinal physiological and pathological functions, drug screening, and regenerative medicine. Recently, the application demands for organoids and enteroids in organ development and nutrition metabolism, immune and cancer research increased. But there are few comparative studies on both of them, especially in immunity and metabolism, which is also conducive to further clarifying the role of crypt stem cells and stromal cells. In our study, “natural” organoids were obtained by tissue culture from fetal bovine jejunum and enteroids were successfully isolated and cultured from organoids without supplementing exogenous factors and Matrigel. These mini-guts displayed similar features to the intestine through immunohistochemistry and transmission electron microscopy. Organoid and enteroid were systematically compared based on the transcriptome. And some of the results were verified by qRT-PCR. Our results showed KDGs (Key driver genes) (e.g., SLC13A1, HOXA7, HOXA6, HOXA5, and HOXD4) of organoids enriched in signaling pathways related to organ development and morphology and metabolism. KDGs (e.g., IL-6, PTGS2, CDH1, JUN, and EGFR) of enteroid were involved in cancer, MAPK, and immune-related signaling pathways. To the Wnt signaling pathway, highly expressed genes in organoids, including RSPO2, NOTUM, WNT6, and RSPO3, supported the homeostasis of crypt stem cells. Enteroids highly expressed CTNNB1 and WNTs. In addition, we found that organoids and enteroids carried out different functions in immunity and metabolism due to different cell compositions. Therefore, it suggested organoid is more compatible and comprehensive, and enteroid is qualified for the research of immunity and cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
3.00%
发文量
97
审稿时长
4-8 weeks
期刊介绍: Journal of Tissue Engineering and Regenerative Medicine publishes rapidly and rigorously peer-reviewed research papers, reviews, clinical case reports, perspectives, and short communications on topics relevant to the development of therapeutic approaches which combine stem or progenitor cells, biomaterials and scaffolds, growth factors and other bioactive agents, and their respective constructs. All papers should deal with research that has a direct or potential impact on the development of novel clinical approaches for the regeneration or repair of tissues and organs. The journal is multidisciplinary, covering the combination of the principles of life sciences and engineering in efforts to advance medicine and clinical strategies. The journal focuses on the use of cells, materials, and biochemical/mechanical factors in the development of biological functional substitutes that restore, maintain, or improve tissue or organ function. The journal publishes research on any tissue or organ and covers all key aspects of the field, including the development of new biomaterials and processing of scaffolds; the use of different types of cells (mainly stem and progenitor cells) and their culture in specific bioreactors; studies in relevant animal models; and clinical trials in human patients performed under strict regulatory and ethical frameworks. Manuscripts describing the use of advanced methods for the characterization of engineered tissues are also of special interest to the journal readership.
期刊最新文献
Challenges and Advances in Peripheral Nerve Tissue Engineering Critical Factors Affecting Nerve Regeneration Polycaprolactone Fiber and Laminin and Collagen IV Protein Incorporation in Implants Enhances Wound Healing in a Novel Mouse Skin Splint Model Herpesvirus-Entry Mediator Inhibits the NF-κB Pathway Activated by IL-17 and Fosters the Osteogenic Differentiation of Allogeneic Mesenchymal Stem Cells Decellularisation and Characterisation of Porcine Pleura as Bioscaffolds in Tissue Engineering Harnessing the Regenerative Potential of Fetal Mesenchymal Stem Cells and Endothelial Colony-Forming Cells in the Biofabrication of Tissue-Engineered Vascular Grafts (TEVGs)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1