减少可穿戴机器人姿态估计中人机界面顺应性误差的算法。

IF 3.4 Q2 ENGINEERING, BIOMEDICAL Wearable technologies Pub Date : 2022-12-27 eCollection Date: 2022-01-01 DOI:10.1017/wtc.2022.29
Gleb Koginov, Kanako Sternberg, Peter Wolf, Kai Schmidt, Jaime E Duarte, Robert Riener
{"title":"减少可穿戴机器人姿态估计中人机界面顺应性误差的算法。","authors":"Gleb Koginov, Kanako Sternberg, Peter Wolf, Kai Schmidt, Jaime E Duarte, Robert Riener","doi":"10.1017/wtc.2022.29","DOIUrl":null,"url":null,"abstract":"<p><p>Assistive forces transmitted from wearable robots to the robot's users are often defined by controllers that rely on the accurate estimation of the human posture. The compliant nature of the human-robot interface can negatively affect the robot's ability to estimate the posture. In this article, we present a novel algorithm that uses machine learning to correct these errors in posture estimation. For that, we recorded motion capture data and robot performance data from a group of participants (<i>n</i> = 8; 4 females) who walked on a treadmill while wearing a wearable robot, the Myosuit. Participants walked on level ground at various gait speeds and levels of support from the Myosuit. We used optical motion capture data to measure the relative displacement between the person and the Myosuit. We then combined this data with data derived from the robot to train a model, using a grading boosting algorithm (XGBoost), that corrected for the mechanical compliance errors in posture estimation. For the Myosuit controller, we were particularly interested in the angle of the thigh segment. Using our algorithm, the estimated thigh segment's angle RMS error was reduced from 6.3° (2.3°) to 2.5° (1.0°), mean (standard deviation). The average maximum error was reduced from 13.1° (4.9°) to 5.9° (2.1°). These improvements in posture estimation were observed for all of the considered assistance force levels and walking speeds. This suggests that ML-based algorithms provide a promising opportunity to be used in combination with wearable-robot sensors for an accurate user posture estimation.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936310/pdf/","citationCount":"0","resultStr":"{\"title\":\"An algorithm to reduce human-robot interface compliance errors in posture estimation in wearable robots.\",\"authors\":\"Gleb Koginov, Kanako Sternberg, Peter Wolf, Kai Schmidt, Jaime E Duarte, Robert Riener\",\"doi\":\"10.1017/wtc.2022.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Assistive forces transmitted from wearable robots to the robot's users are often defined by controllers that rely on the accurate estimation of the human posture. The compliant nature of the human-robot interface can negatively affect the robot's ability to estimate the posture. In this article, we present a novel algorithm that uses machine learning to correct these errors in posture estimation. For that, we recorded motion capture data and robot performance data from a group of participants (<i>n</i> = 8; 4 females) who walked on a treadmill while wearing a wearable robot, the Myosuit. Participants walked on level ground at various gait speeds and levels of support from the Myosuit. We used optical motion capture data to measure the relative displacement between the person and the Myosuit. We then combined this data with data derived from the robot to train a model, using a grading boosting algorithm (XGBoost), that corrected for the mechanical compliance errors in posture estimation. For the Myosuit controller, we were particularly interested in the angle of the thigh segment. Using our algorithm, the estimated thigh segment's angle RMS error was reduced from 6.3° (2.3°) to 2.5° (1.0°), mean (standard deviation). The average maximum error was reduced from 13.1° (4.9°) to 5.9° (2.1°). These improvements in posture estimation were observed for all of the considered assistance force levels and walking speeds. This suggests that ML-based algorithms provide a promising opportunity to be used in combination with wearable-robot sensors for an accurate user posture estimation.</p>\",\"PeriodicalId\":75318,\"journal\":{\"name\":\"Wearable technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2022-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936310/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wearable technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/wtc.2022.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wearable technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/wtc.2022.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

从可穿戴机器人向机器人用户传输的辅助力通常由控制器确定,而控制器则依赖于对人体姿势的准确估计。人机界面的顺应性会对机器人估计姿势的能力产生负面影响。在本文中,我们提出了一种新颖的算法,该算法利用机器学习来纠正姿势估计中的这些误差。为此,我们记录了一组参与者(n = 8;4 名女性)的运动捕捉数据和机器人性能数据,他们穿着可穿戴机器人 Myosuit 在跑步机上行走。参与者以不同的步速和 Myosuit 的支持程度在平地上行走。我们使用光学运动捕捉数据来测量人与 Myosuit 之间的相对位移。然后,我们将这些数据与来自机器人的数据结合起来,使用分级提升算法(XGBoost)训练模型,该算法可纠正姿势估计中的机械顺应性误差。对于 Myosuit 控制器,我们尤其关注大腿部分的角度。使用我们的算法后,估计的大腿部分角度均方根误差从 6.3°(2.3°)减小到 2.5°(1.0°)(平均值(标准偏差))。平均最大误差从 13.1°(4.9°)减小到 5.9°(2.1°)。在所有考虑的辅助力水平和行走速度下,都能观察到姿势估计的这些改进。这表明,基于 ML 的算法与可穿戴机器人传感器结合使用,为准确估计用户姿势提供了一个大有可为的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An algorithm to reduce human-robot interface compliance errors in posture estimation in wearable robots.

Assistive forces transmitted from wearable robots to the robot's users are often defined by controllers that rely on the accurate estimation of the human posture. The compliant nature of the human-robot interface can negatively affect the robot's ability to estimate the posture. In this article, we present a novel algorithm that uses machine learning to correct these errors in posture estimation. For that, we recorded motion capture data and robot performance data from a group of participants (n = 8; 4 females) who walked on a treadmill while wearing a wearable robot, the Myosuit. Participants walked on level ground at various gait speeds and levels of support from the Myosuit. We used optical motion capture data to measure the relative displacement between the person and the Myosuit. We then combined this data with data derived from the robot to train a model, using a grading boosting algorithm (XGBoost), that corrected for the mechanical compliance errors in posture estimation. For the Myosuit controller, we were particularly interested in the angle of the thigh segment. Using our algorithm, the estimated thigh segment's angle RMS error was reduced from 6.3° (2.3°) to 2.5° (1.0°), mean (standard deviation). The average maximum error was reduced from 13.1° (4.9°) to 5.9° (2.1°). These improvements in posture estimation were observed for all of the considered assistance force levels and walking speeds. This suggests that ML-based algorithms provide a promising opportunity to be used in combination with wearable-robot sensors for an accurate user posture estimation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊最新文献
Concurrent validity of inertial measurement units in range of motion measurements of upper extremity: A systematic review and meta-analysis. Acute suppression of lower limb spasm by sacral afferent stimulation for people with spinal cord injury: A pilot study GLULA: Linear attention-based model for efficient human activity recognition from wearable sensors Erratum: Validity of estimating center of pressure during walking and running with plantar load from a three-sensor wireless insole - ERRATUM. A novel neck brace to characterize neck mobility impairments following neck dissection in head and neck cancer patients - ADDENDUM.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1