以软珊瑚为灵感的仿生防污涂料的构建与应用

IF 1.6 Q4 ENGINEERING, BIOMEDICAL Biosurface and Biotribology Pub Date : 2022-08-19 DOI:10.1049/bsb2.12041
Wei Bing, E. Jin, Limei Tian, Huichao Jin, Zhuo Liu
{"title":"以软珊瑚为灵感的仿生防污涂料的构建与应用","authors":"Wei Bing,&nbsp;E. Jin,&nbsp;Limei Tian,&nbsp;Huichao Jin,&nbsp;Zhuo Liu","doi":"10.1049/bsb2.12041","DOIUrl":null,"url":null,"abstract":"<p>Marine biofouling will bring a series of environmental and social problems, which restrict the development and utilisation of marine resources. Therefore, how to prevent biofouling has become a global issue. With the exploration of antifouling methods, bionic antifouling technology with environmentally friendly, broad-spectrum, and long-term advantages has gradually attracted people's attention. Inspired by the antifouling strategy of soft coral (<i>Sarcophyton trocheliophorum</i>), the silicone rubber (RTV-2) with similar elasticity to coral skin was selected as the substrate. The composite structure of the upper transparent layer and the lower porous layer was prepared by simulating the structure of soft coral as the structural factors of the bionic antifouling coatings. Meanwhile, several organic antifouling components with high content contained in soft coral were added to the transparent layer and porous layer, respectively, as the component factors of biomimetic coatings. The bionic antifouling coatings, which are highly consistent with the coral structure, obtained the best antifouling performance under static and dynamic conditions. The above results provide new ideas for the synthesis of environmentally friendly bionic antifouling coatings.</p>","PeriodicalId":52235,"journal":{"name":"Biosurface and Biotribology","volume":"8 3","pages":"244-253"},"PeriodicalIF":1.6000,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.12041","citationCount":"0","resultStr":"{\"title\":\"Construction and application of bionic antifouling coatings inspired by soft coral\",\"authors\":\"Wei Bing,&nbsp;E. Jin,&nbsp;Limei Tian,&nbsp;Huichao Jin,&nbsp;Zhuo Liu\",\"doi\":\"10.1049/bsb2.12041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Marine biofouling will bring a series of environmental and social problems, which restrict the development and utilisation of marine resources. Therefore, how to prevent biofouling has become a global issue. With the exploration of antifouling methods, bionic antifouling technology with environmentally friendly, broad-spectrum, and long-term advantages has gradually attracted people's attention. Inspired by the antifouling strategy of soft coral (<i>Sarcophyton trocheliophorum</i>), the silicone rubber (RTV-2) with similar elasticity to coral skin was selected as the substrate. The composite structure of the upper transparent layer and the lower porous layer was prepared by simulating the structure of soft coral as the structural factors of the bionic antifouling coatings. Meanwhile, several organic antifouling components with high content contained in soft coral were added to the transparent layer and porous layer, respectively, as the component factors of biomimetic coatings. The bionic antifouling coatings, which are highly consistent with the coral structure, obtained the best antifouling performance under static and dynamic conditions. The above results provide new ideas for the synthesis of environmentally friendly bionic antifouling coatings.</p>\",\"PeriodicalId\":52235,\"journal\":{\"name\":\"Biosurface and Biotribology\",\"volume\":\"8 3\",\"pages\":\"244-253\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/bsb2.12041\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosurface and Biotribology\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/bsb2.12041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosurface and Biotribology","FirstCategoryId":"1087","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/bsb2.12041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

海洋生物污染将带来一系列的环境和社会问题,制约着海洋资源的开发利用。因此,如何防止生物污染已成为一个全球性的问题。随着防污方法的探索,具有环保、广谱、长效优势的仿生防污技术逐渐受到人们的重视。受软珊瑚(Sarcophyton trocheliophorum)防污策略的启发,选择与珊瑚皮肤弹性相似的硅橡胶(r电视-2)作为基材。通过模拟软珊瑚的结构,制备上透明层和下多孔层的复合结构,作为仿生防污涂料的结构因子。同时,在透明层和多孔层中分别加入软珊瑚中含量较高的几种有机防污成分,作为仿生涂层的组成因子。与珊瑚结构高度一致的仿生防污涂料在静态和动态条件下均获得了最佳的防污性能。上述结果为环境友好型仿生防污涂料的合成提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Construction and application of bionic antifouling coatings inspired by soft coral

Marine biofouling will bring a series of environmental and social problems, which restrict the development and utilisation of marine resources. Therefore, how to prevent biofouling has become a global issue. With the exploration of antifouling methods, bionic antifouling technology with environmentally friendly, broad-spectrum, and long-term advantages has gradually attracted people's attention. Inspired by the antifouling strategy of soft coral (Sarcophyton trocheliophorum), the silicone rubber (RTV-2) with similar elasticity to coral skin was selected as the substrate. The composite structure of the upper transparent layer and the lower porous layer was prepared by simulating the structure of soft coral as the structural factors of the bionic antifouling coatings. Meanwhile, several organic antifouling components with high content contained in soft coral were added to the transparent layer and porous layer, respectively, as the component factors of biomimetic coatings. The bionic antifouling coatings, which are highly consistent with the coral structure, obtained the best antifouling performance under static and dynamic conditions. The above results provide new ideas for the synthesis of environmentally friendly bionic antifouling coatings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosurface and Biotribology
Biosurface and Biotribology Engineering-Mechanical Engineering
CiteScore
1.70
自引率
0.00%
发文量
27
审稿时长
11 weeks
期刊最新文献
Protein hydrogels for biomedical applications Flow field characteristics and drag reduction performance of high–low velocity stripes on the biomimetic imbricated fish scale surfaces Advancements and challenges in bionic joint lubrication biomaterials for sports medicine Biofunctionalisation strategies of material surface and the inspired biological effects for bone repair Enhancing the biological functionality of poly (lactic-co-glycolic acid) cage-like structures through surface modification with micro- and nano-sized hydroxyapatite particles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1