C. Peschle, R. Botta, R. Müller, M. Valtieri, B. Ziegler
{"title":"多能造血干细胞的纯化及功能分析。","authors":"C. Peschle, R. Botta, R. Müller, M. Valtieri, B. Ziegler","doi":"10.1046/J.1468-0734.2001.00029.X","DOIUrl":null,"url":null,"abstract":"Hematolymphopoietic stem cells (HSC) have the capacity for extensive self-renewal and pluripotent myelolymphoid differentiation. Recent studies have emphasized the heterogeneity of human HSC subsets in terms of proliferative and self-renewal capacity. In the NOD-SCID (nonobese diabetic-severe combined immunodeficient) mouse xenograft assay, most CD34+38- stem cell clones proliferate at early times, but then disappear, whereas only few clones persist: possibly, the latter ones consist of long-term engrafting CD34+38- HSC expressing the KDR receptor (i.e. the vascular endothelial growth factor receptor II). In this regard, isolation of the small KDR+ subset from the CD34+ hematopoietic progenitors (and possibly from the CD34-lin- population) may provide a novel and effective approach for the purification of long-term proliferating HSC. More importantly, KDR+ HSC isolation will pave the way to cellular/molecular characterization and improved functional manipulation of HSC/HSC subsets, as well as to innovative approaches for HSC clinical utilization, specifically transplantation, transfusion medicine and gene therapy.","PeriodicalId":82483,"journal":{"name":"Reviews in clinical and experimental hematology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2001-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1046/J.1468-0734.2001.00029.X","citationCount":"17","resultStr":"{\"title\":\"Purification and functional assay of pluripotent hematopoietic stem cells.\",\"authors\":\"C. Peschle, R. Botta, R. Müller, M. Valtieri, B. Ziegler\",\"doi\":\"10.1046/J.1468-0734.2001.00029.X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hematolymphopoietic stem cells (HSC) have the capacity for extensive self-renewal and pluripotent myelolymphoid differentiation. Recent studies have emphasized the heterogeneity of human HSC subsets in terms of proliferative and self-renewal capacity. In the NOD-SCID (nonobese diabetic-severe combined immunodeficient) mouse xenograft assay, most CD34+38- stem cell clones proliferate at early times, but then disappear, whereas only few clones persist: possibly, the latter ones consist of long-term engrafting CD34+38- HSC expressing the KDR receptor (i.e. the vascular endothelial growth factor receptor II). In this regard, isolation of the small KDR+ subset from the CD34+ hematopoietic progenitors (and possibly from the CD34-lin- population) may provide a novel and effective approach for the purification of long-term proliferating HSC. More importantly, KDR+ HSC isolation will pave the way to cellular/molecular characterization and improved functional manipulation of HSC/HSC subsets, as well as to innovative approaches for HSC clinical utilization, specifically transplantation, transfusion medicine and gene therapy.\",\"PeriodicalId\":82483,\"journal\":{\"name\":\"Reviews in clinical and experimental hematology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1046/J.1468-0734.2001.00029.X\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in clinical and experimental hematology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1046/J.1468-0734.2001.00029.X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in clinical and experimental hematology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1046/J.1468-0734.2001.00029.X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Purification and functional assay of pluripotent hematopoietic stem cells.
Hematolymphopoietic stem cells (HSC) have the capacity for extensive self-renewal and pluripotent myelolymphoid differentiation. Recent studies have emphasized the heterogeneity of human HSC subsets in terms of proliferative and self-renewal capacity. In the NOD-SCID (nonobese diabetic-severe combined immunodeficient) mouse xenograft assay, most CD34+38- stem cell clones proliferate at early times, but then disappear, whereas only few clones persist: possibly, the latter ones consist of long-term engrafting CD34+38- HSC expressing the KDR receptor (i.e. the vascular endothelial growth factor receptor II). In this regard, isolation of the small KDR+ subset from the CD34+ hematopoietic progenitors (and possibly from the CD34-lin- population) may provide a novel and effective approach for the purification of long-term proliferating HSC. More importantly, KDR+ HSC isolation will pave the way to cellular/molecular characterization and improved functional manipulation of HSC/HSC subsets, as well as to innovative approaches for HSC clinical utilization, specifically transplantation, transfusion medicine and gene therapy.