电子束扫描正弦波调制电抗表面天线

IF 1.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY EPJ Applied Metamaterials Pub Date : 2019-01-01 DOI:10.1051/EPJAM/2019011
Dooheon Yang, S. Nam
{"title":"电子束扫描正弦波调制电抗表面天线","authors":"Dooheon Yang, S. Nam","doi":"10.1051/EPJAM/2019011","DOIUrl":null,"url":null,"abstract":"An electronically beamscannable sinusoidally modulated reactance surface (SMRS) antenna and its design procedure are investigated. The antenna is composed of capacitively modulated reactance surface whose profile is a sinusoidally varying form. This configuration generates a radiating leaky wave and the antenna's radiation pattern including beam angle and beamwidth can be controlled with different parameters of the modulated surface reactance of the SMRS period. A beamscanning characteristic of the capacitively modulated SMRS antenna is shown with the design procedure and the simulated results. Designed antenna was simulated using commercial EM tool and the result was well matched with the calculated main beam direction verifying the validity of design method. About 33° of beamcanning range was obtained with the center radiating angle of 45° at 9 GHz. Designed antenna showed reasonable input matching and efficiencies within beamscanning range of the antenna.","PeriodicalId":43689,"journal":{"name":"EPJ Applied Metamaterials","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/EPJAM/2019011","citationCount":"1","resultStr":"{\"title\":\"Electronically beamscannable sinusoidally modulated reactance surface antenna\",\"authors\":\"Dooheon Yang, S. Nam\",\"doi\":\"10.1051/EPJAM/2019011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An electronically beamscannable sinusoidally modulated reactance surface (SMRS) antenna and its design procedure are investigated. The antenna is composed of capacitively modulated reactance surface whose profile is a sinusoidally varying form. This configuration generates a radiating leaky wave and the antenna's radiation pattern including beam angle and beamwidth can be controlled with different parameters of the modulated surface reactance of the SMRS period. A beamscanning characteristic of the capacitively modulated SMRS antenna is shown with the design procedure and the simulated results. Designed antenna was simulated using commercial EM tool and the result was well matched with the calculated main beam direction verifying the validity of design method. About 33° of beamcanning range was obtained with the center radiating angle of 45° at 9 GHz. Designed antenna showed reasonable input matching and efficiencies within beamscanning range of the antenna.\",\"PeriodicalId\":43689,\"journal\":{\"name\":\"EPJ Applied Metamaterials\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1051/EPJAM/2019011\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Applied Metamaterials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/EPJAM/2019011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Applied Metamaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/EPJAM/2019011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

研究了一种电子束可扫描正弦波调制电抗表面天线及其设计方法。该天线由电容调制的电抗表面组成,其轮廓为正弦变化形式。这种结构产生辐射漏波,天线的辐射方向图包括波束角和波束宽度可以通过SMRS周期的调制表面电抗的不同参数来控制。通过设计过程和仿真结果,说明了电容调制SMRS天线的波束扫描特性。利用商用电磁仿真工具对设计的天线进行仿真,结果与计算的主波束方向吻合较好,验证了设计方法的有效性。在9 GHz时,以45°的中心辐射角获得了约33°的波束扫描范围。设计的天线在波束扫描范围内具有合理的输入匹配和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electronically beamscannable sinusoidally modulated reactance surface antenna
An electronically beamscannable sinusoidally modulated reactance surface (SMRS) antenna and its design procedure are investigated. The antenna is composed of capacitively modulated reactance surface whose profile is a sinusoidally varying form. This configuration generates a radiating leaky wave and the antenna's radiation pattern including beam angle and beamwidth can be controlled with different parameters of the modulated surface reactance of the SMRS period. A beamscanning characteristic of the capacitively modulated SMRS antenna is shown with the design procedure and the simulated results. Designed antenna was simulated using commercial EM tool and the result was well matched with the calculated main beam direction verifying the validity of design method. About 33° of beamcanning range was obtained with the center radiating angle of 45° at 9 GHz. Designed antenna showed reasonable input matching and efficiencies within beamscanning range of the antenna.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EPJ Applied Metamaterials
EPJ Applied Metamaterials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
3.10
自引率
6.20%
发文量
16
审稿时长
8 weeks
期刊最新文献
Safe energy-storage mechanical metamaterials via architecture design Thin layers of microwave absorbing metamaterials with carbon fibers and FeSi alloy ribbons to enhance the absorption properties Applications of negative permeability metamaterials for electromagnetic resonance type wireless power transfer systems An ultrathin and flexible terahertz electromagnetically induced transparency-like metasurface based on asymmetric resonators Reflection and transmission of nanoresonators including bi-isotropic and metamaterial layers: opportunities to control and amplify chiral and nonreciprocal effects for nanophotonics applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1