c-Si光伏产业的循环材料和废物流洞察

IF 1.9 Q3 PHYSICS, APPLIED EPJ Photovoltaics Pub Date : 2023-01-01 DOI:10.1051/epjpv/2022029
Peter Brailovsky, Kerstin Baumann, M. Held, A. Briem, K. Wambach, Estelle Gervais, Sina Herceg, Boris Mertvoy, S. Nold, J. Rentsch
{"title":"c-Si光伏产业的循环材料和废物流洞察","authors":"Peter Brailovsky, Kerstin Baumann, M. Held, A. Briem, K. Wambach, Estelle Gervais, Sina Herceg, Boris Mertvoy, S. Nold, J. Rentsch","doi":"10.1051/epjpv/2022029","DOIUrl":null,"url":null,"abstract":"A material flow model for the production of Bifacial Selective Emitter 60-cell p-type Cz PERC (Passivated Emitter and Rear Contacted) glass-backsheet modules with aluminium frame was built. The selected module represents mature technologies in the PV industry and their manufacturing is considered to take place in China in a production cluster with an annual module capacity of 5 GWp. In a first step, data acquisition and validation for wafer, cell and module fabs took place. The data were used to generate the reference system lifecycle inventories (LCI) and extended waste databases for the reference wafers, cells and modules. A set of potential circularity actions, such as the vertical integration of the operations and waste revalorisation strategies, had been proposed and their environmental performance and cost assessed by means of a life cycle assessment (LCA) and a total cost of ownership (TCO). Our results show that 87% of the waste can be reduced and revalorised, this represents a circular flow of raw materials of 18,756 Mg per year from a 5GWp PV module production cluster. Environmental impact reductions of 0.6–2.3% are estimated for different impact categories. We also estimate a cost reduction potential of 2.59% from total module costs.","PeriodicalId":42768,"journal":{"name":"EPJ Photovoltaics","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Insights into circular material and waste flows from c-Si PV industry\",\"authors\":\"Peter Brailovsky, Kerstin Baumann, M. Held, A. Briem, K. Wambach, Estelle Gervais, Sina Herceg, Boris Mertvoy, S. Nold, J. Rentsch\",\"doi\":\"10.1051/epjpv/2022029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A material flow model for the production of Bifacial Selective Emitter 60-cell p-type Cz PERC (Passivated Emitter and Rear Contacted) glass-backsheet modules with aluminium frame was built. The selected module represents mature technologies in the PV industry and their manufacturing is considered to take place in China in a production cluster with an annual module capacity of 5 GWp. In a first step, data acquisition and validation for wafer, cell and module fabs took place. The data were used to generate the reference system lifecycle inventories (LCI) and extended waste databases for the reference wafers, cells and modules. A set of potential circularity actions, such as the vertical integration of the operations and waste revalorisation strategies, had been proposed and their environmental performance and cost assessed by means of a life cycle assessment (LCA) and a total cost of ownership (TCO). Our results show that 87% of the waste can be reduced and revalorised, this represents a circular flow of raw materials of 18,756 Mg per year from a 5GWp PV module production cluster. Environmental impact reductions of 0.6–2.3% are estimated for different impact categories. We also estimate a cost reduction potential of 2.59% from total module costs.\",\"PeriodicalId\":42768,\"journal\":{\"name\":\"EPJ Photovoltaics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Photovoltaics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/epjpv/2022029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Photovoltaics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/epjpv/2022029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

建立了铝框架双面选择性发射极60电池p型Cz PERC(钝化发射极和后接触)玻璃背板模块的物料流模型。所选组件代表了光伏行业的成熟技术,其生产被认为是在中国的生产集群中进行的,年组件产能为5gwp。在第一步,数据采集和验证晶圆,电池和模块晶圆厂进行。这些数据用于生成参考系统生命周期清单(LCI)和参考晶圆、电池和模块的扩展废物数据库。提出了一套潜在的循环行动,例如业务的垂直整合和废物再估值战略,并通过生命周期评估(LCA)和总拥有成本(TCO)对其环境绩效和成本进行了评估。我们的研究结果表明,87%的废物可以减少并重新利用,这代表了一个5GWp光伏组件生产集群每年18756毫克的原材料循环流动。根据不同的影响类别,估计可减少0.6-2.3%的环境影响。我们还估计从总模块成本中降低2.59%的成本潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Insights into circular material and waste flows from c-Si PV industry
A material flow model for the production of Bifacial Selective Emitter 60-cell p-type Cz PERC (Passivated Emitter and Rear Contacted) glass-backsheet modules with aluminium frame was built. The selected module represents mature technologies in the PV industry and their manufacturing is considered to take place in China in a production cluster with an annual module capacity of 5 GWp. In a first step, data acquisition and validation for wafer, cell and module fabs took place. The data were used to generate the reference system lifecycle inventories (LCI) and extended waste databases for the reference wafers, cells and modules. A set of potential circularity actions, such as the vertical integration of the operations and waste revalorisation strategies, had been proposed and their environmental performance and cost assessed by means of a life cycle assessment (LCA) and a total cost of ownership (TCO). Our results show that 87% of the waste can be reduced and revalorised, this represents a circular flow of raw materials of 18,756 Mg per year from a 5GWp PV module production cluster. Environmental impact reductions of 0.6–2.3% are estimated for different impact categories. We also estimate a cost reduction potential of 2.59% from total module costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EPJ Photovoltaics
EPJ Photovoltaics PHYSICS, APPLIED-
CiteScore
2.30
自引率
4.00%
发文量
15
审稿时长
8 weeks
期刊最新文献
Epitaxy and characterization of InP/InGaAs tandem solar cells grown by MOVPE on InP and Si substrates Effect of the cooling rate on encapsulant's crystallinity and optical properties, and photovoltaic modules' lifetime Insights into circular material and waste flows from c-Si PV industry A direct measure of positive feedback loop-gain due to reverse bias damage in thin-film solar cells using lock-in thermography Combining circularity and environmental metrics to assess material flows of PV silicon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1