符合IEC 61853-1、-2的商用c-Si光伏组件的能源性能及其对年比产率的影响

IF 1.9 Q3 PHYSICS, APPLIED EPJ Photovoltaics Pub Date : 2023-01-01 DOI:10.1051/epjpv/2022032
C. Monokroussos, Yating Zhang, Eleanor W. Lee, Frank Xu, Allen Zhou, Yichi Zhang, W. Herrmann
{"title":"符合IEC 61853-1、-2的商用c-Si光伏组件的能源性能及其对年比产率的影响","authors":"C. Monokroussos, Yating Zhang, Eleanor W. Lee, Frank Xu, Allen Zhou, Yichi Zhang, W. Herrmann","doi":"10.1051/epjpv/2022032","DOIUrl":null,"url":null,"abstract":"As energy yields of photovoltaic modules are highly related to local climate and ambient conditions, it is necessary to assess the energy-yield performance of PV modules under various operating conditions. This work compares commercial crystalline silicon (c-Si) based PV modules (including mono c-Si Al BSF, mono c-Si PERC, multi-crystalline (mc-Si) Al BSF, and n-type c-Si solar cells) sampled from 27 PV module manufacturers located in the Asia-Pacific region between 2016 and 2022. Several test items were compared including: (i) light-induced degradation (LID), (ii) irradiance-temperature-efficiency (GTE) matrix, (iii) angular response and (iv) temperature coefficients, which are correspondingly performed according to IEC 61215-1, -1-1, -2 and IEC 61853-1, -2. The coefficient of variation (CoV) was calculated to express the module-to-module differences within similar technology types. Benefiting from the technological innovation of c-Si based PV modules, emerging PV modules feature better performance in some extreme ambient conditions, such as low irradiance, high ambient temperature, and high ratio of diffuse irradiance. The analysis of CoV indicates that the difference of irradiance-dependent and thermal behavior between modules within the same technology may exceed the differences between different technologies. Using synthetic hourly meteorological data of 5 sites from MeteoNorm in PVsyst, the annual specific yield of four technology groups of PV modules were simulated and compared. Overall, it is shown that the maximum differences as large as 7.34% in terms of PV module's specific yield are expected within same PV technology, which exceeds the maximum difference of 2.16% obtained for specific yields of different PV technologies.","PeriodicalId":42768,"journal":{"name":"EPJ Photovoltaics","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Energy performance of commercial c-Si PV modules in accordance with IEC 61853-1, -2 and impact on the annual specific yield\",\"authors\":\"C. Monokroussos, Yating Zhang, Eleanor W. Lee, Frank Xu, Allen Zhou, Yichi Zhang, W. Herrmann\",\"doi\":\"10.1051/epjpv/2022032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As energy yields of photovoltaic modules are highly related to local climate and ambient conditions, it is necessary to assess the energy-yield performance of PV modules under various operating conditions. This work compares commercial crystalline silicon (c-Si) based PV modules (including mono c-Si Al BSF, mono c-Si PERC, multi-crystalline (mc-Si) Al BSF, and n-type c-Si solar cells) sampled from 27 PV module manufacturers located in the Asia-Pacific region between 2016 and 2022. Several test items were compared including: (i) light-induced degradation (LID), (ii) irradiance-temperature-efficiency (GTE) matrix, (iii) angular response and (iv) temperature coefficients, which are correspondingly performed according to IEC 61215-1, -1-1, -2 and IEC 61853-1, -2. The coefficient of variation (CoV) was calculated to express the module-to-module differences within similar technology types. Benefiting from the technological innovation of c-Si based PV modules, emerging PV modules feature better performance in some extreme ambient conditions, such as low irradiance, high ambient temperature, and high ratio of diffuse irradiance. The analysis of CoV indicates that the difference of irradiance-dependent and thermal behavior between modules within the same technology may exceed the differences between different technologies. Using synthetic hourly meteorological data of 5 sites from MeteoNorm in PVsyst, the annual specific yield of four technology groups of PV modules were simulated and compared. Overall, it is shown that the maximum differences as large as 7.34% in terms of PV module's specific yield are expected within same PV technology, which exceeds the maximum difference of 2.16% obtained for specific yields of different PV technologies.\",\"PeriodicalId\":42768,\"journal\":{\"name\":\"EPJ Photovoltaics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Photovoltaics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/epjpv/2022032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Photovoltaics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/epjpv/2022032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

由于光伏组件的产能与当地气候和环境条件密切相关,因此有必要对光伏组件在各种运行条件下的产能性能进行评估。本研究比较了2016年至2022年间亚太地区27家光伏组件制造商的商用晶体硅(c-Si)光伏组件(包括单c-Si Al BSF、单c-Si PERC、多晶(mc-Si) Al BSF和n型c-Si太阳能电池)。比较了几个测试项目,包括:(i)光致降解(LID), (ii)辐照-温度效率(GTE)矩阵,(iii)角响应和(iv)温度系数,分别根据IEC 61215-1, -1-1, -2和IEC 61853-1, -2进行了相应的测试。计算变异系数(CoV)来表达相似技术类型中模块间的差异。得益于碳硅基光伏组件的技术创新,新兴光伏组件在一些极端环境条件下,如低辐照度、高环境温度和高漫射辐照度比,具有更好的性能。CoV分析表明,同一技术模块之间的辐照依赖和热行为差异可能超过不同技术之间的差异。利用MeteoNorm在PVsyst中5个站点的逐时综合气象资料,对4组光伏组件的年比产进行了模拟和比较。总体而言,在同一光伏技术下,光伏组件比产率的最大差异可达7.34%,超过了不同光伏技术比产率的最大差异2.16%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy performance of commercial c-Si PV modules in accordance with IEC 61853-1, -2 and impact on the annual specific yield
As energy yields of photovoltaic modules are highly related to local climate and ambient conditions, it is necessary to assess the energy-yield performance of PV modules under various operating conditions. This work compares commercial crystalline silicon (c-Si) based PV modules (including mono c-Si Al BSF, mono c-Si PERC, multi-crystalline (mc-Si) Al BSF, and n-type c-Si solar cells) sampled from 27 PV module manufacturers located in the Asia-Pacific region between 2016 and 2022. Several test items were compared including: (i) light-induced degradation (LID), (ii) irradiance-temperature-efficiency (GTE) matrix, (iii) angular response and (iv) temperature coefficients, which are correspondingly performed according to IEC 61215-1, -1-1, -2 and IEC 61853-1, -2. The coefficient of variation (CoV) was calculated to express the module-to-module differences within similar technology types. Benefiting from the technological innovation of c-Si based PV modules, emerging PV modules feature better performance in some extreme ambient conditions, such as low irradiance, high ambient temperature, and high ratio of diffuse irradiance. The analysis of CoV indicates that the difference of irradiance-dependent and thermal behavior between modules within the same technology may exceed the differences between different technologies. Using synthetic hourly meteorological data of 5 sites from MeteoNorm in PVsyst, the annual specific yield of four technology groups of PV modules were simulated and compared. Overall, it is shown that the maximum differences as large as 7.34% in terms of PV module's specific yield are expected within same PV technology, which exceeds the maximum difference of 2.16% obtained for specific yields of different PV technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EPJ Photovoltaics
EPJ Photovoltaics PHYSICS, APPLIED-
CiteScore
2.30
自引率
4.00%
发文量
15
审稿时长
8 weeks
期刊最新文献
Epitaxy and characterization of InP/InGaAs tandem solar cells grown by MOVPE on InP and Si substrates Effect of the cooling rate on encapsulant's crystallinity and optical properties, and photovoltaic modules' lifetime Insights into circular material and waste flows from c-Si PV industry A direct measure of positive feedback loop-gain due to reverse bias damage in thin-film solar cells using lock-in thermography Combining circularity and environmental metrics to assess material flows of PV silicon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1