一个自一致的混合模型连接经验和光学模型快速,非破坏性的在线表征薄,多孔硅层

IF 1.9 Q3 PHYSICS, APPLIED EPJ Photovoltaics Pub Date : 2023-01-01 DOI:10.1051/epjpv/2022035
Alexandra Wörnhör, M. Demant, H. Vahlman, S. Rein
{"title":"一个自一致的混合模型连接经验和光学模型快速,非破坏性的在线表征薄,多孔硅层","authors":"Alexandra Wörnhör, M. Demant, H. Vahlman, S. Rein","doi":"10.1051/epjpv/2022035","DOIUrl":null,"url":null,"abstract":"Epitaxially-grown wafers on top of sintered porous silicon are a material-efficient wafer production process, that is now being launched into mass production. This production process makes the material-expensive sawing procedure obsolete since the wafer can be easily detached from its seed substrate. With high-throughput inline production processes, fast and reliable evaluation processes are crucial. The quality of the porous layers plays an important role regarding a successful detachment. Therefore, we present a fast and non-destructive investigation algorithm of thin, porous silicon layers. We predict the layer parameters directly from inline reflectance data by using a convolutional neural network (CNN), which is inspired by a comprehensive optical modelling approach from literature. There, a numerical fitting approach on reflection curves calculated with a physical model is performed. By adding the physical model to the CNN, we create a hybrid model, that not only predicts layer parameters, but also recalculates reflection curves. This allows a consistency check for a self-supervised network optimization. Evaluation on experimental data shows a high similarity with Scanning Electron Microscopy (SEM) measurements. Since parallel computation is possible with the CNN, 30.000 samples can be evaluated in roughly 100 ms.","PeriodicalId":42768,"journal":{"name":"EPJ Photovoltaics","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A self-consistent hybrid model connects empirical and optical models for fast, non-destructive inline characterization of thin, porous silicon layers\",\"authors\":\"Alexandra Wörnhör, M. Demant, H. Vahlman, S. Rein\",\"doi\":\"10.1051/epjpv/2022035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Epitaxially-grown wafers on top of sintered porous silicon are a material-efficient wafer production process, that is now being launched into mass production. This production process makes the material-expensive sawing procedure obsolete since the wafer can be easily detached from its seed substrate. With high-throughput inline production processes, fast and reliable evaluation processes are crucial. The quality of the porous layers plays an important role regarding a successful detachment. Therefore, we present a fast and non-destructive investigation algorithm of thin, porous silicon layers. We predict the layer parameters directly from inline reflectance data by using a convolutional neural network (CNN), which is inspired by a comprehensive optical modelling approach from literature. There, a numerical fitting approach on reflection curves calculated with a physical model is performed. By adding the physical model to the CNN, we create a hybrid model, that not only predicts layer parameters, but also recalculates reflection curves. This allows a consistency check for a self-supervised network optimization. Evaluation on experimental data shows a high similarity with Scanning Electron Microscopy (SEM) measurements. Since parallel computation is possible with the CNN, 30.000 samples can be evaluated in roughly 100 ms.\",\"PeriodicalId\":42768,\"journal\":{\"name\":\"EPJ Photovoltaics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Photovoltaics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/epjpv/2022035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Photovoltaics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/epjpv/2022035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

在烧结多孔硅上外延生长晶圆是一种材料高效的晶圆生产工艺,目前正投入大规模生产。这种生产过程使得材料昂贵的锯切过程过时,因为晶圆片可以很容易地从它的种子基板上分离出来。在高通量的在线生产过程中,快速可靠的评估过程至关重要。多孔层的质量对成功剥离起着重要的作用。因此,我们提出了一种快速、无损的薄多孔硅层检测算法。我们使用卷积神经网络(CNN)直接从内联反射率数据预测层参数,这是受到文献中综合光学建模方法的启发。在此基础上,对物理模型计算的反射曲线进行了数值拟合。通过将物理模型添加到CNN中,我们创建了一个混合模型,该模型不仅可以预测层参数,还可以重新计算反射曲线。这允许对自监督网络优化进行一致性检查。实验数据与扫描电子显微镜(SEM)测量结果高度相似。由于CNN可以进行并行计算,因此可以在大约100毫秒内评估30,000个样本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A self-consistent hybrid model connects empirical and optical models for fast, non-destructive inline characterization of thin, porous silicon layers
Epitaxially-grown wafers on top of sintered porous silicon are a material-efficient wafer production process, that is now being launched into mass production. This production process makes the material-expensive sawing procedure obsolete since the wafer can be easily detached from its seed substrate. With high-throughput inline production processes, fast and reliable evaluation processes are crucial. The quality of the porous layers plays an important role regarding a successful detachment. Therefore, we present a fast and non-destructive investigation algorithm of thin, porous silicon layers. We predict the layer parameters directly from inline reflectance data by using a convolutional neural network (CNN), which is inspired by a comprehensive optical modelling approach from literature. There, a numerical fitting approach on reflection curves calculated with a physical model is performed. By adding the physical model to the CNN, we create a hybrid model, that not only predicts layer parameters, but also recalculates reflection curves. This allows a consistency check for a self-supervised network optimization. Evaluation on experimental data shows a high similarity with Scanning Electron Microscopy (SEM) measurements. Since parallel computation is possible with the CNN, 30.000 samples can be evaluated in roughly 100 ms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EPJ Photovoltaics
EPJ Photovoltaics PHYSICS, APPLIED-
CiteScore
2.30
自引率
4.00%
发文量
15
审稿时长
8 weeks
期刊最新文献
Epitaxy and characterization of InP/InGaAs tandem solar cells grown by MOVPE on InP and Si substrates Effect of the cooling rate on encapsulant's crystallinity and optical properties, and photovoltaic modules' lifetime Insights into circular material and waste flows from c-Si PV industry A direct measure of positive feedback loop-gain due to reverse bias damage in thin-film solar cells using lock-in thermography Combining circularity and environmental metrics to assess material flows of PV silicon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1