卷积和反卷积:帮助在研究和工业中进行测试的两种数学工具

J. Fanton
{"title":"卷积和反卷积:帮助在研究和工业中进行测试的两种数学工具","authors":"J. Fanton","doi":"10.1051/IJMQE/2021004","DOIUrl":null,"url":null,"abstract":"The concepts of convolution and deconvolution are well known in the field of physical measurement. In particular, they are of interest in the field of metrology, since they can positively influence the performance of the measurement. Numerous mathematical models and computer developments dedicated to convolution and deconvolution have emerged, enabling a more efficient use of experimental data; this in sectors as different as biology, astronomy, manufacturing and energy industries. The subject finds today a new topicality because it has been made accessible to a large public for applications such as processing photographic images. The purpose of this paper is to take into account some recent evolutions such as the introduction of convolution methods in international test standards. Thus, its first part delivers a few reminders of some associated definitions. They concern linear systems properties, and integral transforms. If convolution, in most cases, does not create major calculation problems, deconvolution on the contrary is an inverse problem, and as such needs more attention. The principles of some of the methods available today are exposed. In the third part, illustrations are given on recent examples of applications, belonging to the domain of electrical energy networks and photographic enhancement.","PeriodicalId":38371,"journal":{"name":"International Journal of Metrology and Quality Engineering","volume":"263 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convolution and deconvolution: two mathematical tools to help performing tests in research and industry\",\"authors\":\"J. Fanton\",\"doi\":\"10.1051/IJMQE/2021004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concepts of convolution and deconvolution are well known in the field of physical measurement. In particular, they are of interest in the field of metrology, since they can positively influence the performance of the measurement. Numerous mathematical models and computer developments dedicated to convolution and deconvolution have emerged, enabling a more efficient use of experimental data; this in sectors as different as biology, astronomy, manufacturing and energy industries. The subject finds today a new topicality because it has been made accessible to a large public for applications such as processing photographic images. The purpose of this paper is to take into account some recent evolutions such as the introduction of convolution methods in international test standards. Thus, its first part delivers a few reminders of some associated definitions. They concern linear systems properties, and integral transforms. If convolution, in most cases, does not create major calculation problems, deconvolution on the contrary is an inverse problem, and as such needs more attention. The principles of some of the methods available today are exposed. In the third part, illustrations are given on recent examples of applications, belonging to the domain of electrical energy networks and photographic enhancement.\",\"PeriodicalId\":38371,\"journal\":{\"name\":\"International Journal of Metrology and Quality Engineering\",\"volume\":\"263 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Metrology and Quality Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/IJMQE/2021004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Metrology and Quality Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/IJMQE/2021004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

卷积和反卷积的概念在物理测量领域是众所周知的。特别是,它们在计量领域很有兴趣,因为它们可以积极地影响测量的性能。许多致力于卷积和反卷积的数学模型和计算机发展已经出现,能够更有效地利用实验数据;这在生物、天文学、制造业和能源行业等不同领域都是如此。今天,这门学科发现了一个新的话题性,因为它已经向广大公众开放,用于处理摄影图像等应用。本文的目的是考虑到一些最近的发展,如引入卷积方法在国际测试标准。因此,它的第一部分提供了一些相关定义的提示。它们涉及线性系统的性质,和积分变换。如果卷积在大多数情况下不会产生重大的计算问题,相反,反卷积是一个逆问题,因此需要更多的关注。揭示了目前可用的一些方法的原理。在第三部分,插图给出了最近的应用实例,属于电能网络和摄影增强领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Convolution and deconvolution: two mathematical tools to help performing tests in research and industry
The concepts of convolution and deconvolution are well known in the field of physical measurement. In particular, they are of interest in the field of metrology, since they can positively influence the performance of the measurement. Numerous mathematical models and computer developments dedicated to convolution and deconvolution have emerged, enabling a more efficient use of experimental data; this in sectors as different as biology, astronomy, manufacturing and energy industries. The subject finds today a new topicality because it has been made accessible to a large public for applications such as processing photographic images. The purpose of this paper is to take into account some recent evolutions such as the introduction of convolution methods in international test standards. Thus, its first part delivers a few reminders of some associated definitions. They concern linear systems properties, and integral transforms. If convolution, in most cases, does not create major calculation problems, deconvolution on the contrary is an inverse problem, and as such needs more attention. The principles of some of the methods available today are exposed. In the third part, illustrations are given on recent examples of applications, belonging to the domain of electrical energy networks and photographic enhancement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Metrology and Quality Engineering
International Journal of Metrology and Quality Engineering Engineering-Safety, Risk, Reliability and Quality
CiteScore
1.70
自引率
0.00%
发文量
8
审稿时长
8 weeks
期刊最新文献
Investigation of influence of grinding wheel and cutting parameters on surface roughness and surface hardening when relieving grinding the gear milling teeth surface based on the Archimedes' spiral Analysis and treatment of current unbalance abnormal situation of 750 kV double-circuit parallel transmission line Characterizing a linear pyrometer at the National Metrology Institute of South Africa Estimation of parallelism measurement uncertainty according to the Geometrical Product Specifications standard using coordinate measuring machine First study on harvesting electromagnetic noise energy generated by the frequency converters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1