{"title":"基于FMEA和改进SEIR流行病模型的COVID-19大流行贝叶斯风险评估","authors":"Yacine Koucha, Qingping Yang","doi":"10.1051/IJMQE/2021012","DOIUrl":null,"url":null,"abstract":"The COVID-19 outbreak is of great concern due to the high rates of infection and the large number of deaths worldwide. In this paper, we considered a Bayesian inference and failure mode and effects analysis of the modified susceptible-exposed-infectious-removed model for the transmission dynamics of COVID-19 with an exponentially distributed infectious period. We estimated the effective reproduction number based on laboratory-confirmed cases and death data using Bayesian inference and analyse the impact of the community spread of COVID-19 across the United Kingdom. We used the failure mode and effects analysis tool to evaluate the effectiveness of the action measures taken to manage the COVID-19 pandemic. We focused on COVID-19 infections and therefore the failure mode is taken as positive cases. The model is applied to COVID-19 data showing the effectiveness of interventions adopted to control the epidemic by reducing the reproduction number of COVID-19. Results have shown that the combination of Bayesian inference, compartmental modelling and failure mode and effects analysis is effective in modelling and studying the risks of COVID-19 transmissions, leading to the quantitative evaluation of the action measures and the identification of the lessons learned from the governmental measures and actions taken in response to COVID-19 in the United Kingdom. Analytical and numerical methods are used to highlight the practical implications of our findings. The proposed methodology will find applications in current and future COVID-19 like pandemics and wide quality engineering.","PeriodicalId":38371,"journal":{"name":"International Journal of Metrology and Quality Engineering","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Bayesian risk assessment of the COVID-19 pandemic using FMEA and a modified SEIR epidemic model\",\"authors\":\"Yacine Koucha, Qingping Yang\",\"doi\":\"10.1051/IJMQE/2021012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The COVID-19 outbreak is of great concern due to the high rates of infection and the large number of deaths worldwide. In this paper, we considered a Bayesian inference and failure mode and effects analysis of the modified susceptible-exposed-infectious-removed model for the transmission dynamics of COVID-19 with an exponentially distributed infectious period. We estimated the effective reproduction number based on laboratory-confirmed cases and death data using Bayesian inference and analyse the impact of the community spread of COVID-19 across the United Kingdom. We used the failure mode and effects analysis tool to evaluate the effectiveness of the action measures taken to manage the COVID-19 pandemic. We focused on COVID-19 infections and therefore the failure mode is taken as positive cases. The model is applied to COVID-19 data showing the effectiveness of interventions adopted to control the epidemic by reducing the reproduction number of COVID-19. Results have shown that the combination of Bayesian inference, compartmental modelling and failure mode and effects analysis is effective in modelling and studying the risks of COVID-19 transmissions, leading to the quantitative evaluation of the action measures and the identification of the lessons learned from the governmental measures and actions taken in response to COVID-19 in the United Kingdom. Analytical and numerical methods are used to highlight the practical implications of our findings. The proposed methodology will find applications in current and future COVID-19 like pandemics and wide quality engineering.\",\"PeriodicalId\":38371,\"journal\":{\"name\":\"International Journal of Metrology and Quality Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Metrology and Quality Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/IJMQE/2021012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Metrology and Quality Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/IJMQE/2021012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
A Bayesian risk assessment of the COVID-19 pandemic using FMEA and a modified SEIR epidemic model
The COVID-19 outbreak is of great concern due to the high rates of infection and the large number of deaths worldwide. In this paper, we considered a Bayesian inference and failure mode and effects analysis of the modified susceptible-exposed-infectious-removed model for the transmission dynamics of COVID-19 with an exponentially distributed infectious period. We estimated the effective reproduction number based on laboratory-confirmed cases and death data using Bayesian inference and analyse the impact of the community spread of COVID-19 across the United Kingdom. We used the failure mode and effects analysis tool to evaluate the effectiveness of the action measures taken to manage the COVID-19 pandemic. We focused on COVID-19 infections and therefore the failure mode is taken as positive cases. The model is applied to COVID-19 data showing the effectiveness of interventions adopted to control the epidemic by reducing the reproduction number of COVID-19. Results have shown that the combination of Bayesian inference, compartmental modelling and failure mode and effects analysis is effective in modelling and studying the risks of COVID-19 transmissions, leading to the quantitative evaluation of the action measures and the identification of the lessons learned from the governmental measures and actions taken in response to COVID-19 in the United Kingdom. Analytical and numerical methods are used to highlight the practical implications of our findings. The proposed methodology will find applications in current and future COVID-19 like pandemics and wide quality engineering.