基于人工神经网络与经验模型相结合的操作Dst指数预测模型

IF 3.4 2区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Journal of Space Weather and Space Climate Pub Date : 2021-01-01 DOI:10.1051/SWSC/2021021
W. Park, Jaejin Lee, Kyung‐Chan Kim, Jongkil Lee, Keunchan Park, Y. Miyashita, J. Sohn, Jae‐Hee Park, Y. Kwak, J. Hwang, Alexander Frias, Jiyoung Kim, Y. Yi
{"title":"基于人工神经网络与经验模型相结合的操作Dst指数预测模型","authors":"W. Park, Jaejin Lee, Kyung‐Chan Kim, Jongkil Lee, Keunchan Park, Y. Miyashita, J. Sohn, Jae‐Hee Park, Y. Kwak, J. Hwang, Alexander Frias, Jiyoung Kim, Y. Yi","doi":"10.1051/SWSC/2021021","DOIUrl":null,"url":null,"abstract":"In this paper, an operational Dst index prediction model is developed by combining empirical and Artificial Neural Network (ANN) models. ANN algorithms are widely used to predict space weather conditions. While they require a large amount of data for machine learning, large-scale geomagnetic storms have not occurred sufficiently for the last 20 years, Advanced Composition Explorer (ACE) and Deep Space Climate Observatory (DSCOVR) mission operation period. Conversely, the empirical models are based on numerical equations derived from human intuition and are therefore applicable to extrapolate for large storms. In this study, we distinguish between Coronal Mass Ejection (CME) driven and Corotating Interaction Region (CIR) driven storms, estimate the minimum Dst values, and derive an equation for describing the recovery phase. The combined Korea Astronomy and Space Science Institute (KASI) Dst Prediction (KDP) model achieved better performance contrasted to ANN model only. This model could be used practically for space weather operation by extending prediction time to 24 h and updating the model output every hour.","PeriodicalId":17034,"journal":{"name":"Journal of Space Weather and Space Climate","volume":"20 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Operational Dst index prediction model based on combination of artificial neural network and empirical model\",\"authors\":\"W. Park, Jaejin Lee, Kyung‐Chan Kim, Jongkil Lee, Keunchan Park, Y. Miyashita, J. Sohn, Jae‐Hee Park, Y. Kwak, J. Hwang, Alexander Frias, Jiyoung Kim, Y. Yi\",\"doi\":\"10.1051/SWSC/2021021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an operational Dst index prediction model is developed by combining empirical and Artificial Neural Network (ANN) models. ANN algorithms are widely used to predict space weather conditions. While they require a large amount of data for machine learning, large-scale geomagnetic storms have not occurred sufficiently for the last 20 years, Advanced Composition Explorer (ACE) and Deep Space Climate Observatory (DSCOVR) mission operation period. Conversely, the empirical models are based on numerical equations derived from human intuition and are therefore applicable to extrapolate for large storms. In this study, we distinguish between Coronal Mass Ejection (CME) driven and Corotating Interaction Region (CIR) driven storms, estimate the minimum Dst values, and derive an equation for describing the recovery phase. The combined Korea Astronomy and Space Science Institute (KASI) Dst Prediction (KDP) model achieved better performance contrasted to ANN model only. This model could be used practically for space weather operation by extending prediction time to 24 h and updating the model output every hour.\",\"PeriodicalId\":17034,\"journal\":{\"name\":\"Journal of Space Weather and Space Climate\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Space Weather and Space Climate\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1051/SWSC/2021021\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Space Weather and Space Climate","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/SWSC/2021021","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 4

摘要

本文将经验模型与人工神经网络(ANN)模型相结合,建立了可操作的Dst指数预测模型。人工神经网络算法被广泛用于预测空间天气状况。虽然它们需要大量的数据来进行机器学习,但在过去的20年里,高级成分探测器(ACE)和深空气候观测站(DSCOVR)任务运行期间,大规模的地磁风暴并没有充分发生。相反,经验模式是基于人类直觉得出的数值方程,因此适用于大风暴的外推。在这项研究中,我们区分了日冕物质抛射(CME)驱动和旋转相互作用区(CIR)驱动的风暴,估计了最小Dst值,并推导了描述恢复阶段的方程。韩国天文空间科学研究院(KASI)联合的Dst预测(KDP)模型与单独的ANN模型相比取得了更好的效果。将预报时间延长至24h,每小时更新一次模式输出,可实际应用于空间天气业务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Operational Dst index prediction model based on combination of artificial neural network and empirical model
In this paper, an operational Dst index prediction model is developed by combining empirical and Artificial Neural Network (ANN) models. ANN algorithms are widely used to predict space weather conditions. While they require a large amount of data for machine learning, large-scale geomagnetic storms have not occurred sufficiently for the last 20 years, Advanced Composition Explorer (ACE) and Deep Space Climate Observatory (DSCOVR) mission operation period. Conversely, the empirical models are based on numerical equations derived from human intuition and are therefore applicable to extrapolate for large storms. In this study, we distinguish between Coronal Mass Ejection (CME) driven and Corotating Interaction Region (CIR) driven storms, estimate the minimum Dst values, and derive an equation for describing the recovery phase. The combined Korea Astronomy and Space Science Institute (KASI) Dst Prediction (KDP) model achieved better performance contrasted to ANN model only. This model could be used practically for space weather operation by extending prediction time to 24 h and updating the model output every hour.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Space Weather and Space Climate
Journal of Space Weather and Space Climate ASTRONOMY & ASTROPHYSICS-GEOCHEMISTRY & GEOPHYSICS
CiteScore
6.90
自引率
6.10%
发文量
40
审稿时长
8 weeks
期刊介绍: The Journal of Space Weather and Space Climate (SWSC) is an international multi-disciplinary and interdisciplinary peer-reviewed open access journal which publishes papers on all aspects of space weather and space climate from a broad range of scientific and technical fields including solar physics, space plasma physics, aeronomy, planetology, radio science, geophysics, biology, medicine, astronautics, aeronautics, electrical engineering, meteorology, climatology, mathematics, economy, informatics.
期刊最新文献
Multi-Instrument Observations and Tracking of a Coronal Mass Ejection Front From Low to Middle Corona A Bayesian approach to the drag-based modelling of ICMEs Reconstruction of electron precipitation spectra at the top of the upper atmosphere using 427.8 nm auroral images Karl von Lindener's Sunspot Observations during 1800 – 1827: Another Long-Term Dataset for the Dalton Minimum On the detection of a solar radio burst event occurred on 28 August 2022 and its effect on GNSS signals as observed by ionospheric scintillation monitors distributed over the American sector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1