Adam Weisel, Rachael Cohen, Jason A. Spector, Yulia Sapir-Lekhovitser
{"title":"一种新型胶原水凝胶真皮模板的加速血管化","authors":"Adam Weisel, Rachael Cohen, Jason A. Spector, Yulia Sapir-Lekhovitser","doi":"10.1002/term.3356","DOIUrl":null,"url":null,"abstract":"<p>Full thickness skin loss is a debilitating problem, most commonly reconstructed using split thickness skin grafts (STSG), which do not reconstitute normal skin thickness and often result in suboptimal functional and esthetic outcomes that diminish a patient's quality of life. To address the minimal dermis present in most STSG, engineered dermal templates were developed that can induce tissue ingrowth and the formation of neodermal tissue. However, clinically available dermal templates have many shortcomings including a relatively slow rate and degree of neovascularization (∼2–4 weeks), resulting in multiple dressing changes, prolonged immobilization, and susceptibility to infection. Presented herein is a novel composite hydrogel scaffold that optimizes a unique scaffold microarchitecture with native hydrogel properties and mechanical cues ideal for promoting neovascularization, tissue regeneration, and wound healing. <i>In vitro</i> analysis demonstrated the unique combination of improved mechanical attributes with native hydrogel properties that promotes cell invasion and remodeling within the scaffold. In a novel 2-stage rat model of full thickness skin loss that closely mimics clinical practice, the composite hydrogel induced rapid cell infiltration and neovascularization, creating a healthy neodermis after only 1 week onto which a skin graft could be placed. The scaffold also elicited a gradual and favorable immune response, resulting in more efficient integration into the host. We have developed a dermal scaffold that utilizes simple but unique collagen hydrogel architectural cues that rapidly induces the formation of stable, functional neodermal tissue, which holds tremendous promise for the treatment of full thickness skin loss.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":"16 12","pages":"1173-1183"},"PeriodicalIF":3.1000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Accelerated vascularization of a novel collagen hydrogel dermal template\",\"authors\":\"Adam Weisel, Rachael Cohen, Jason A. Spector, Yulia Sapir-Lekhovitser\",\"doi\":\"10.1002/term.3356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Full thickness skin loss is a debilitating problem, most commonly reconstructed using split thickness skin grafts (STSG), which do not reconstitute normal skin thickness and often result in suboptimal functional and esthetic outcomes that diminish a patient's quality of life. To address the minimal dermis present in most STSG, engineered dermal templates were developed that can induce tissue ingrowth and the formation of neodermal tissue. However, clinically available dermal templates have many shortcomings including a relatively slow rate and degree of neovascularization (∼2–4 weeks), resulting in multiple dressing changes, prolonged immobilization, and susceptibility to infection. Presented herein is a novel composite hydrogel scaffold that optimizes a unique scaffold microarchitecture with native hydrogel properties and mechanical cues ideal for promoting neovascularization, tissue regeneration, and wound healing. <i>In vitro</i> analysis demonstrated the unique combination of improved mechanical attributes with native hydrogel properties that promotes cell invasion and remodeling within the scaffold. In a novel 2-stage rat model of full thickness skin loss that closely mimics clinical practice, the composite hydrogel induced rapid cell infiltration and neovascularization, creating a healthy neodermis after only 1 week onto which a skin graft could be placed. The scaffold also elicited a gradual and favorable immune response, resulting in more efficient integration into the host. We have developed a dermal scaffold that utilizes simple but unique collagen hydrogel architectural cues that rapidly induces the formation of stable, functional neodermal tissue, which holds tremendous promise for the treatment of full thickness skin loss.</p>\",\"PeriodicalId\":202,\"journal\":{\"name\":\"Journal of Tissue Engineering and Regenerative Medicine\",\"volume\":\"16 12\",\"pages\":\"1173-1183\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Tissue Engineering and Regenerative Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/term.3356\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering and Regenerative Medicine","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/term.3356","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Accelerated vascularization of a novel collagen hydrogel dermal template
Full thickness skin loss is a debilitating problem, most commonly reconstructed using split thickness skin grafts (STSG), which do not reconstitute normal skin thickness and often result in suboptimal functional and esthetic outcomes that diminish a patient's quality of life. To address the minimal dermis present in most STSG, engineered dermal templates were developed that can induce tissue ingrowth and the formation of neodermal tissue. However, clinically available dermal templates have many shortcomings including a relatively slow rate and degree of neovascularization (∼2–4 weeks), resulting in multiple dressing changes, prolonged immobilization, and susceptibility to infection. Presented herein is a novel composite hydrogel scaffold that optimizes a unique scaffold microarchitecture with native hydrogel properties and mechanical cues ideal for promoting neovascularization, tissue regeneration, and wound healing. In vitro analysis demonstrated the unique combination of improved mechanical attributes with native hydrogel properties that promotes cell invasion and remodeling within the scaffold. In a novel 2-stage rat model of full thickness skin loss that closely mimics clinical practice, the composite hydrogel induced rapid cell infiltration and neovascularization, creating a healthy neodermis after only 1 week onto which a skin graft could be placed. The scaffold also elicited a gradual and favorable immune response, resulting in more efficient integration into the host. We have developed a dermal scaffold that utilizes simple but unique collagen hydrogel architectural cues that rapidly induces the formation of stable, functional neodermal tissue, which holds tremendous promise for the treatment of full thickness skin loss.
期刊介绍:
Journal of Tissue Engineering and Regenerative Medicine publishes rapidly and rigorously peer-reviewed research papers, reviews, clinical case reports, perspectives, and short communications on topics relevant to the development of therapeutic approaches which combine stem or progenitor cells, biomaterials and scaffolds, growth factors and other bioactive agents, and their respective constructs. All papers should deal with research that has a direct or potential impact on the development of novel clinical approaches for the regeneration or repair of tissues and organs.
The journal is multidisciplinary, covering the combination of the principles of life sciences and engineering in efforts to advance medicine and clinical strategies. The journal focuses on the use of cells, materials, and biochemical/mechanical factors in the development of biological functional substitutes that restore, maintain, or improve tissue or organ function. The journal publishes research on any tissue or organ and covers all key aspects of the field, including the development of new biomaterials and processing of scaffolds; the use of different types of cells (mainly stem and progenitor cells) and their culture in specific bioreactors; studies in relevant animal models; and clinical trials in human patients performed under strict regulatory and ethical frameworks. Manuscripts describing the use of advanced methods for the characterization of engineered tissues are also of special interest to the journal readership.