解开关于雨养棉花决策中固有的农业和经济不确定性的复杂组合

IF 1.8 4区 农林科学 Q2 AGRICULTURE, MULTIDISCIPLINARY Crop & Pasture Science Pub Date : 2023-05-09 DOI:10.1071/cp22145
S. Godfrey, T. Nordblom, M. Anwar, Ryan H. L. Ip, D. Luckett, M. Bange
{"title":"解开关于雨养棉花决策中固有的农业和经济不确定性的复杂组合","authors":"S. Godfrey, T. Nordblom, M. Anwar, Ryan H. L. Ip, D. Luckett, M. Bange","doi":"10.1071/cp22145","DOIUrl":null,"url":null,"abstract":"ABSTRACT Context. Production of rainfed (dryland) cotton (Gossypium hirsutum L.) occurs in many places globally, and is always burdened with greater uncertainties in outcomes than irrigated cotton. Assessing farm financial viability helps farmers to make clearer and more informed decisions with a fuller awareness of the potential risks to their business. Aim. We aimed to highlight key points of uncertainty common in rainfed cotton production and quantify these variable conditions to facilitate clearer decision-making on sowing dates and row configurations. Methods. The consequences of these decisions at six locations across two states in Australia, given estimates of plant-available water at sowing, are expressed in terms of comparable probability distributions of cotton lint yield (derived from crop modelling using historical weather data) and gross margin per hectare (derived from historical prices for inputs and cotton lint yield), using the copula approach. Examples of contrasting conditions and likely outcomes are summarised. Key results. Sowing at the end of October with solid row configuration tended to provide the highest yield; however, single- and double-skip row configurations generally resulted in higher gross margins. Places associated with higher summer-dominant rainfall had greater chance of positive gross margins. Conclusion. In order to maximise the probability of growing a profitable crop, farmers need to consider the variabilities and dependencies within and across price and yield before selecting the most appropriate agronomic decisions. Implications. Given appropriate data on growing conditions and responses, our methodology can be applied in other locations around the world, and to other crops.","PeriodicalId":51237,"journal":{"name":"Crop & Pasture Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Untangling the complex mix of agronomic and economic uncertainties inherent in decisions on rainfed cotton\",\"authors\":\"S. Godfrey, T. Nordblom, M. Anwar, Ryan H. L. Ip, D. Luckett, M. Bange\",\"doi\":\"10.1071/cp22145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Context. Production of rainfed (dryland) cotton (Gossypium hirsutum L.) occurs in many places globally, and is always burdened with greater uncertainties in outcomes than irrigated cotton. Assessing farm financial viability helps farmers to make clearer and more informed decisions with a fuller awareness of the potential risks to their business. Aim. We aimed to highlight key points of uncertainty common in rainfed cotton production and quantify these variable conditions to facilitate clearer decision-making on sowing dates and row configurations. Methods. The consequences of these decisions at six locations across two states in Australia, given estimates of plant-available water at sowing, are expressed in terms of comparable probability distributions of cotton lint yield (derived from crop modelling using historical weather data) and gross margin per hectare (derived from historical prices for inputs and cotton lint yield), using the copula approach. Examples of contrasting conditions and likely outcomes are summarised. Key results. Sowing at the end of October with solid row configuration tended to provide the highest yield; however, single- and double-skip row configurations generally resulted in higher gross margins. Places associated with higher summer-dominant rainfall had greater chance of positive gross margins. Conclusion. In order to maximise the probability of growing a profitable crop, farmers need to consider the variabilities and dependencies within and across price and yield before selecting the most appropriate agronomic decisions. Implications. Given appropriate data on growing conditions and responses, our methodology can be applied in other locations around the world, and to other crops.\",\"PeriodicalId\":51237,\"journal\":{\"name\":\"Crop & Pasture Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crop & Pasture Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1071/cp22145\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop & Pasture Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1071/cp22145","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Untangling the complex mix of agronomic and economic uncertainties inherent in decisions on rainfed cotton
ABSTRACT Context. Production of rainfed (dryland) cotton (Gossypium hirsutum L.) occurs in many places globally, and is always burdened with greater uncertainties in outcomes than irrigated cotton. Assessing farm financial viability helps farmers to make clearer and more informed decisions with a fuller awareness of the potential risks to their business. Aim. We aimed to highlight key points of uncertainty common in rainfed cotton production and quantify these variable conditions to facilitate clearer decision-making on sowing dates and row configurations. Methods. The consequences of these decisions at six locations across two states in Australia, given estimates of plant-available water at sowing, are expressed in terms of comparable probability distributions of cotton lint yield (derived from crop modelling using historical weather data) and gross margin per hectare (derived from historical prices for inputs and cotton lint yield), using the copula approach. Examples of contrasting conditions and likely outcomes are summarised. Key results. Sowing at the end of October with solid row configuration tended to provide the highest yield; however, single- and double-skip row configurations generally resulted in higher gross margins. Places associated with higher summer-dominant rainfall had greater chance of positive gross margins. Conclusion. In order to maximise the probability of growing a profitable crop, farmers need to consider the variabilities and dependencies within and across price and yield before selecting the most appropriate agronomic decisions. Implications. Given appropriate data on growing conditions and responses, our methodology can be applied in other locations around the world, and to other crops.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Crop & Pasture Science
Crop & Pasture Science AGRICULTURE, MULTIDISCIPLINARY-
CiteScore
4.20
自引率
15.80%
发文量
111
审稿时长
3 months
期刊介绍: Crop and Pasture Science (formerly known as Australian Journal of Agricultural Research) is an international journal publishing outcomes of strategic research in crop and pasture sciences and the sustainability of farming systems. The primary focus is broad-scale cereals, grain legumes, oilseeds and pastures. Articles are encouraged that advance understanding in plant-based agricultural systems through the use of well-defined and original aims designed to test a hypothesis, innovative and rigorous experimental design, and strong interpretation. The journal embraces experimental approaches from molecular level to whole systems, and the research must present novel findings and progress the science of agriculture. Crop and Pasture Science is read by agricultural scientists and plant biologists, industry, administrators, policy-makers, and others with an interest in the challenges and opportunities facing world agricultural production. Crop and Pasture Science is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.
期刊最新文献
<i>Corrigendum to</i>: Forage crops: a repository of functional trait diversity for current and future climate adaptation Crop wild relatives: the road to climate change adaptation Salinity, alkalinity and their combined stress effects on germination and seedling growth attributes in oats (Avena sativa) Tagasaste silvopastures in steep-hill country. 2. Effect of increasing proximity to tagasaste on growth and survival of companion pasture species Inclusion of Egyptian clover improves the value of sorghum-based cropping systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1