{"title":"海马体与皮质/皮质下区之间的结构连通性与精神分裂症的认知障碍有关,但与情绪障碍无关","authors":"Natsuko Ikeda, Shinichi Yamada, Kasumi Yasuda, Shinya Uenishi, Atsushi Tamaki, Takuya Ishida, Michiyo Tabata, Tomikimi Tsuji, Sohei Kimoto, Shun Takahashi","doi":"10.1111/jnp.12298","DOIUrl":null,"url":null,"abstract":"<p>Cognitive impairment in schizophrenia and other psychiatric disorders is a challenge to be overcome in order to maintain patients' quality of life and social function. The neurological pathogenesis of cognitive impairment requires further elucidation. In general, the hippocampus interacts between the cortical and subcortical areas for information processing and consolidation and has an important role in memory. We examined the relationship between structural connectivity of the hippocampus and cortical/subcortical areas and cognitive impairment in schizophrenia, major depressive disorder and bipolar disorder. Subjects comprised 21 healthy controls, 19 patients with schizophrenia, 20 patients with bipolar disorder and 18 patients with major depressive disorder. Diffusion-weighted tensor images data were processed using ProbtrackX2 to calculate the structural connectivity between the hippocampus and cortical/subcortical areas. Cognitive function was assessed using the Brief Assessment of Cognition in schizophrenia composite score. Hippocampal structural connectivity index was significantly correlated with composite score in the schizophrenia group but not in the healthy control, major depressive disorder or bipolar disorder groups. There were no statistically significant differences in hippocampal structural connectivity index between the four groups. Structural connectivity between the hippocampus and cortical/subcortical areas is suggested to be a pathophysiological mechanism of comprehensive cognitive impairment in schizophrenia.</p>","PeriodicalId":197,"journal":{"name":"Journal of Neuropsychology","volume":"17 2","pages":"351-363"},"PeriodicalIF":2.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Structural connectivity between the hippocampus and cortical/subcortical area relates to cognitive impairment in schizophrenia but not in mood disorders\",\"authors\":\"Natsuko Ikeda, Shinichi Yamada, Kasumi Yasuda, Shinya Uenishi, Atsushi Tamaki, Takuya Ishida, Michiyo Tabata, Tomikimi Tsuji, Sohei Kimoto, Shun Takahashi\",\"doi\":\"10.1111/jnp.12298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cognitive impairment in schizophrenia and other psychiatric disorders is a challenge to be overcome in order to maintain patients' quality of life and social function. The neurological pathogenesis of cognitive impairment requires further elucidation. In general, the hippocampus interacts between the cortical and subcortical areas for information processing and consolidation and has an important role in memory. We examined the relationship between structural connectivity of the hippocampus and cortical/subcortical areas and cognitive impairment in schizophrenia, major depressive disorder and bipolar disorder. Subjects comprised 21 healthy controls, 19 patients with schizophrenia, 20 patients with bipolar disorder and 18 patients with major depressive disorder. Diffusion-weighted tensor images data were processed using ProbtrackX2 to calculate the structural connectivity between the hippocampus and cortical/subcortical areas. Cognitive function was assessed using the Brief Assessment of Cognition in schizophrenia composite score. Hippocampal structural connectivity index was significantly correlated with composite score in the schizophrenia group but not in the healthy control, major depressive disorder or bipolar disorder groups. There were no statistically significant differences in hippocampal structural connectivity index between the four groups. Structural connectivity between the hippocampus and cortical/subcortical areas is suggested to be a pathophysiological mechanism of comprehensive cognitive impairment in schizophrenia.</p>\",\"PeriodicalId\":197,\"journal\":{\"name\":\"Journal of Neuropsychology\",\"volume\":\"17 2\",\"pages\":\"351-363\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuropsychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jnp.12298\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PSYCHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuropsychology","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jnp.12298","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHOLOGY","Score":null,"Total":0}
Structural connectivity between the hippocampus and cortical/subcortical area relates to cognitive impairment in schizophrenia but not in mood disorders
Cognitive impairment in schizophrenia and other psychiatric disorders is a challenge to be overcome in order to maintain patients' quality of life and social function. The neurological pathogenesis of cognitive impairment requires further elucidation. In general, the hippocampus interacts between the cortical and subcortical areas for information processing and consolidation and has an important role in memory. We examined the relationship between structural connectivity of the hippocampus and cortical/subcortical areas and cognitive impairment in schizophrenia, major depressive disorder and bipolar disorder. Subjects comprised 21 healthy controls, 19 patients with schizophrenia, 20 patients with bipolar disorder and 18 patients with major depressive disorder. Diffusion-weighted tensor images data were processed using ProbtrackX2 to calculate the structural connectivity between the hippocampus and cortical/subcortical areas. Cognitive function was assessed using the Brief Assessment of Cognition in schizophrenia composite score. Hippocampal structural connectivity index was significantly correlated with composite score in the schizophrenia group but not in the healthy control, major depressive disorder or bipolar disorder groups. There were no statistically significant differences in hippocampal structural connectivity index between the four groups. Structural connectivity between the hippocampus and cortical/subcortical areas is suggested to be a pathophysiological mechanism of comprehensive cognitive impairment in schizophrenia.
期刊介绍:
The Journal of Neuropsychology publishes original contributions to scientific knowledge in neuropsychology including:
• clinical and research studies with neurological, psychiatric and psychological patient populations in all age groups
• behavioural or pharmacological treatment regimes
• cognitive experimentation and neuroimaging
• multidisciplinary approach embracing areas such as developmental psychology, neurology, psychiatry, physiology, endocrinology, pharmacology and imaging science
The following types of paper are invited:
• papers reporting original empirical investigations
• theoretical papers; provided that these are sufficiently related to empirical data
• review articles, which need not be exhaustive, but which should give an interpretation of the state of research in a given field and, where appropriate, identify its clinical implications
• brief reports and comments
• case reports
• fast-track papers (included in the issue following acceptation) reaction and rebuttals (short reactions to publications in JNP followed by an invited rebuttal of the original authors)
• special issues.