T. Skaugen, Anne Ellekjær Stavang, D. Lawrence, K. Møen
{"title":"集水区响应时间-从集水区距离和速度了解径流动态","authors":"T. Skaugen, Anne Ellekjær Stavang, D. Lawrence, K. Møen","doi":"10.1080/02626667.2023.2201449","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this study we explore how varying the river network (RN) density affects the distribution of hillslope to RN distances, the subsurface water celerities and hence the response times. Eleven Norwegian catchments (with areas of 0.007 to 500 km2) were used for the analysis, and the Distance Distribution Dynamics (DDD) hydrological model was calibrated for each catchment and RN. Equally good Kling-Gupta efficiency scores suggest a degree of equifinality in that many constellations of RNs and subsurface celerities have equally good model performance. All catchments display a linear relationship between the calibrated mean subsurface water celerity and mean hillslope to RN distance, consistent with a constant mean response time (MRT). The MRTs vary from 1 to 49 days for the different catchments and agree with MRT estimated from recession analysis and regionalized through regression and catchment characteristics. The latter aids in the estimation of model parameters for ungauged basins.","PeriodicalId":55042,"journal":{"name":"Hydrological Sciences Journal-Journal Des Sciences Hydrologiques","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catchment response times – understanding runoff dynamics from catchment distances and celerities\",\"authors\":\"T. Skaugen, Anne Ellekjær Stavang, D. Lawrence, K. Møen\",\"doi\":\"10.1080/02626667.2023.2201449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this study we explore how varying the river network (RN) density affects the distribution of hillslope to RN distances, the subsurface water celerities and hence the response times. Eleven Norwegian catchments (with areas of 0.007 to 500 km2) were used for the analysis, and the Distance Distribution Dynamics (DDD) hydrological model was calibrated for each catchment and RN. Equally good Kling-Gupta efficiency scores suggest a degree of equifinality in that many constellations of RNs and subsurface celerities have equally good model performance. All catchments display a linear relationship between the calibrated mean subsurface water celerity and mean hillslope to RN distance, consistent with a constant mean response time (MRT). The MRTs vary from 1 to 49 days for the different catchments and agree with MRT estimated from recession analysis and regionalized through regression and catchment characteristics. The latter aids in the estimation of model parameters for ungauged basins.\",\"PeriodicalId\":55042,\"journal\":{\"name\":\"Hydrological Sciences Journal-Journal Des Sciences Hydrologiques\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrological Sciences Journal-Journal Des Sciences Hydrologiques\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/02626667.2023.2201449\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Sciences Journal-Journal Des Sciences Hydrologiques","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/02626667.2023.2201449","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Catchment response times – understanding runoff dynamics from catchment distances and celerities
ABSTRACT In this study we explore how varying the river network (RN) density affects the distribution of hillslope to RN distances, the subsurface water celerities and hence the response times. Eleven Norwegian catchments (with areas of 0.007 to 500 km2) were used for the analysis, and the Distance Distribution Dynamics (DDD) hydrological model was calibrated for each catchment and RN. Equally good Kling-Gupta efficiency scores suggest a degree of equifinality in that many constellations of RNs and subsurface celerities have equally good model performance. All catchments display a linear relationship between the calibrated mean subsurface water celerity and mean hillslope to RN distance, consistent with a constant mean response time (MRT). The MRTs vary from 1 to 49 days for the different catchments and agree with MRT estimated from recession analysis and regionalized through regression and catchment characteristics. The latter aids in the estimation of model parameters for ungauged basins.
期刊介绍:
Hydrological Sciences Journal is an international journal focused on hydrology and the relationship of water to atmospheric processes and climate.
Hydrological Sciences Journal is the official journal of the International Association of Hydrological Sciences (IAHS).
Hydrological Sciences Journal aims to provide a forum for original papers and for the exchange of information and views on significant developments in hydrology worldwide on subjects including:
Hydrological cycle and processes
Surface water
Groundwater
Water resource systems and management
Geographical factors
Earth and atmospheric processes
Hydrological extremes and their impact
Hydrological Sciences Journal offers a variety of formats for paper submission, including original articles, scientific notes, discussions, and rapid communications.