南亚免耕和保护性农业:问题、挑战、前景和效益

IF 6 2区 生物学 Q1 PLANT SCIENCES Critical Reviews in Plant Sciences Pub Date : 2020-05-03 DOI:10.1080/07352689.2020.1782069
J. Somasundaram, N. Sinha, R. Dalal, R. Lal, M. Mohanty, A. Naorem, K. M. Hati, R. Chaudhary, A. Biswas, A. Patra, S. K. Chaudhari
{"title":"南亚免耕和保护性农业:问题、挑战、前景和效益","authors":"J. Somasundaram, N. Sinha, R. Dalal, R. Lal, M. Mohanty, A. Naorem, K. M. Hati, R. Chaudhary, A. Biswas, A. Patra, S. K. Chaudhari","doi":"10.1080/07352689.2020.1782069","DOIUrl":null,"url":null,"abstract":"Abstract Of late, intensive farming for higher food production is often associated with many negative implications for soil systems, such as decline of soil organic matter (SOM), increase in risks of soil erosion by wind and/or water, decline in soil biological diversity, increase in degradation of soil physical quality, lower nutrient-use efficiency, high risks of groundwater pollution, falling water tables, increasing salinization and waterlogging, in-field burning of crop residues, pollution of air and emission of greenhouse gases (GHG), leading to global warming, and decline in factor productivity. These negative implications necessitate an objective review of strategies to develop sustainable management practices, which could not only sustain soil health and ensure food security, but also enhance carbon sequestration, decrease GHG emissions, and offer clean and better ecosystem services. Conservation agriculture (CA), that includes reduced or no-till practices along with crop residue retention and mixed crop rotations, offers multiple benefits. Adoption of a system-based CA conserves water, improves and creates more efficient use of natural resources through the integrated management of available soil nutrients, water, and biological resources, and enhances use efficiency of external inputs. Due to apparent benefits of CA, it is increasingly being adopted and now covers about 180 million hectares (Mha) worldwide. However, in South Asia its spread is low (<5 Mha), mostly concentrated in the Indo-Gangetic Plains (IGP). In this region, one of the serious issues is “residue burning” with severe environmental impacts. A huge amount of crop residue left over after the combine harvest of rice has forced farmers to practice widespread residue burning (∼140 M tonnes) to cope with excessive stubble and also for timely planting/sowing of succeeding crops. In rice-wheat cropping systems, which cover more than 10 Mha in the IGP, CA practices are relatively more accepted by farmers. In these systems, any delay in sowing leads to yield penalty of 1–1.5% per day after the optimum sowing date of wheat. The strong adoption of CA practices in IGP is mainly to overcome delayed sowing due to the field preparation and control of weeds, timely planting, and also escape from terminal heat during the grain-filling stage. Major challenges to CA adoption in South Asia are small land holdings (<1 ha), low technological reach to farmers, nonavailability of suitable farm implements for small farm holders, and the staunch conventional farming mind-set. South Asia region consists of many countries of diverse agro-ecologies with contrasting farming systems and management. This region, recently known for rapid economic growth and increasing population, necessitates higher food production and also hot-spots for adoption of CA technologies. Therefore, in this review critically explores the possibility, extent of area, prospects, challenges, and benefits of CA in South Asia. HIGHLIGHTS Conservation agriculture (CA), consisting of reduced or no-tillage and crop residue retention, is a self–sustainable system which offers an alternative to crop residue burning. The CA approach improves soil health by increasing soil organic carbon (SOC) and aggregation and also conserves soil, water and energy than conventional farming systems. South Asian countries are suitable for adoption of CA practices but the area under CA remains low (<5 Mha) as compared to the global area (180 Mha). Adoption of CA in South Asia has skewed distribution, mainly in Indo-Gangetic Plains (IGP) in India, Pakistan, Nepal and Bangladesh in South Asia. Development of herbicide-resistant weed species and weed shift by continuous application of herbicides are the major challenges in adoption of CA. The traditional-farming mind-set, socio-economic conditions, small farm-holdings, weed and residue management, and non-availability of suitable machinery are key constraints to the low adoption of CA practices in South Asia.","PeriodicalId":10854,"journal":{"name":"Critical Reviews in Plant Sciences","volume":"39 1","pages":"236 - 279"},"PeriodicalIF":6.0000,"publicationDate":"2020-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07352689.2020.1782069","citationCount":"55","resultStr":"{\"title\":\"No-Till Farming and Conservation Agriculture in South Asia – Issues, Challenges, Prospects and Benefits\",\"authors\":\"J. Somasundaram, N. Sinha, R. Dalal, R. Lal, M. Mohanty, A. Naorem, K. M. Hati, R. Chaudhary, A. Biswas, A. Patra, S. K. Chaudhari\",\"doi\":\"10.1080/07352689.2020.1782069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Of late, intensive farming for higher food production is often associated with many negative implications for soil systems, such as decline of soil organic matter (SOM), increase in risks of soil erosion by wind and/or water, decline in soil biological diversity, increase in degradation of soil physical quality, lower nutrient-use efficiency, high risks of groundwater pollution, falling water tables, increasing salinization and waterlogging, in-field burning of crop residues, pollution of air and emission of greenhouse gases (GHG), leading to global warming, and decline in factor productivity. These negative implications necessitate an objective review of strategies to develop sustainable management practices, which could not only sustain soil health and ensure food security, but also enhance carbon sequestration, decrease GHG emissions, and offer clean and better ecosystem services. Conservation agriculture (CA), that includes reduced or no-till practices along with crop residue retention and mixed crop rotations, offers multiple benefits. Adoption of a system-based CA conserves water, improves and creates more efficient use of natural resources through the integrated management of available soil nutrients, water, and biological resources, and enhances use efficiency of external inputs. Due to apparent benefits of CA, it is increasingly being adopted and now covers about 180 million hectares (Mha) worldwide. However, in South Asia its spread is low (<5 Mha), mostly concentrated in the Indo-Gangetic Plains (IGP). In this region, one of the serious issues is “residue burning” with severe environmental impacts. A huge amount of crop residue left over after the combine harvest of rice has forced farmers to practice widespread residue burning (∼140 M tonnes) to cope with excessive stubble and also for timely planting/sowing of succeeding crops. In rice-wheat cropping systems, which cover more than 10 Mha in the IGP, CA practices are relatively more accepted by farmers. In these systems, any delay in sowing leads to yield penalty of 1–1.5% per day after the optimum sowing date of wheat. The strong adoption of CA practices in IGP is mainly to overcome delayed sowing due to the field preparation and control of weeds, timely planting, and also escape from terminal heat during the grain-filling stage. Major challenges to CA adoption in South Asia are small land holdings (<1 ha), low technological reach to farmers, nonavailability of suitable farm implements for small farm holders, and the staunch conventional farming mind-set. South Asia region consists of many countries of diverse agro-ecologies with contrasting farming systems and management. This region, recently known for rapid economic growth and increasing population, necessitates higher food production and also hot-spots for adoption of CA technologies. Therefore, in this review critically explores the possibility, extent of area, prospects, challenges, and benefits of CA in South Asia. HIGHLIGHTS Conservation agriculture (CA), consisting of reduced or no-tillage and crop residue retention, is a self–sustainable system which offers an alternative to crop residue burning. The CA approach improves soil health by increasing soil organic carbon (SOC) and aggregation and also conserves soil, water and energy than conventional farming systems. South Asian countries are suitable for adoption of CA practices but the area under CA remains low (<5 Mha) as compared to the global area (180 Mha). Adoption of CA in South Asia has skewed distribution, mainly in Indo-Gangetic Plains (IGP) in India, Pakistan, Nepal and Bangladesh in South Asia. Development of herbicide-resistant weed species and weed shift by continuous application of herbicides are the major challenges in adoption of CA. The traditional-farming mind-set, socio-economic conditions, small farm-holdings, weed and residue management, and non-availability of suitable machinery are key constraints to the low adoption of CA practices in South Asia.\",\"PeriodicalId\":10854,\"journal\":{\"name\":\"Critical Reviews in Plant Sciences\",\"volume\":\"39 1\",\"pages\":\"236 - 279\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2020-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/07352689.2020.1782069\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Plant Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/07352689.2020.1782069\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Plant Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07352689.2020.1782069","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 55

摘要

近年来,为提高粮食产量而进行的集约化耕作往往会对土壤系统产生许多负面影响,如土壤有机质(SOM)的减少、风和/或水对土壤侵蚀的风险增加、土壤生物多样性的下降、土壤物理质量退化的加剧、养分利用效率的降低、地下水污染的高风险、地下水位下降、盐碱化和涝渍的增加、作物秸秆的田间焚烧等。空气污染和温室气体(GHG)排放,导致全球变暖,要素生产率下降。这些负面影响需要客观审查制定可持续管理实践的战略,这些管理实践不仅可以维持土壤健康和确保粮食安全,还可以增强碳固存,减少温室气体排放,并提供清洁和更好的生态系统服务。保护性农业(CA),包括减少或免耕做法以及作物残茬保留和混合作物轮作,提供多种好处。采用以系统为基础的CA可以节约用水,通过对土壤养分、水和生物资源的综合管理,改善和更有效地利用自然资源,并提高外部投入的使用效率。由于CA的明显优势,它被越来越多地采用,目前在世界范围内覆盖约1.8亿公顷(Mha)。然而,在南亚,其分布较低(<5 Mha),主要集中在印度-恒河平原(IGP)。在该地区,“渣烧”是一个严重的问题,对环境造成了严重影响。水稻联合收获后留下的大量作物残茬迫使农民广泛焚烧残茬(约1.4亿吨),以应对过多的残茬,并及时种植/播种后续作物。在IGP中覆盖超过10万公顷的稻麦种植系统中,CA做法相对更容易被农民接受。在这些系统中,播期的任何延迟都会导致小麦最佳播期后每天1-1.5%的产量损失。IGP之所以大力采用CA做法,主要是为了克服因田间准备和杂草防治导致的延迟播种,及时播种,以及逃避灌浆期的末热。南亚采用农业生产面临的主要挑战是土地拥有量小(<1公顷)、农民对技术的了解程度低、小农场主无法获得合适的农具以及坚定的传统农业思维模式。南亚地区由许多具有不同农业生态的国家组成,其农业系统和管理存在差异。该地区最近因经济快速增长和人口不断增加而闻名,需要提高粮食产量,也是采用人工智能技术的热点地区。因此,本文批判性地探讨了南亚地区农业发展的可能性、范围、前景、挑战和利益。保护性农业(CA)由减少或免耕和作物残茬保留组成,是一种自我可持续的系统,提供了作物残茬燃烧的替代方案。CA方法通过增加土壤有机碳(SOC)和团聚体来改善土壤健康,并且比传统耕作系统还能保护土壤、水和能源。南亚国家适合采用CA实践,但与全球面积(180 Mha)相比,CA面积仍然很低(<5 Mha)。南亚采用CA的地区分布不均,主要分布在印度的印度河-恒河平原(IGP)、南亚的巴基斯坦、尼泊尔和孟加拉国。抗除草剂杂草品种的发展和持续使用除草剂引起的杂草转移是采用人工种植的主要挑战。传统农业思维方式、社会经济条件、小农场、杂草和残留物管理以及缺乏合适的机械是南亚人工种植采用率低的主要制约因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
No-Till Farming and Conservation Agriculture in South Asia – Issues, Challenges, Prospects and Benefits
Abstract Of late, intensive farming for higher food production is often associated with many negative implications for soil systems, such as decline of soil organic matter (SOM), increase in risks of soil erosion by wind and/or water, decline in soil biological diversity, increase in degradation of soil physical quality, lower nutrient-use efficiency, high risks of groundwater pollution, falling water tables, increasing salinization and waterlogging, in-field burning of crop residues, pollution of air and emission of greenhouse gases (GHG), leading to global warming, and decline in factor productivity. These negative implications necessitate an objective review of strategies to develop sustainable management practices, which could not only sustain soil health and ensure food security, but also enhance carbon sequestration, decrease GHG emissions, and offer clean and better ecosystem services. Conservation agriculture (CA), that includes reduced or no-till practices along with crop residue retention and mixed crop rotations, offers multiple benefits. Adoption of a system-based CA conserves water, improves and creates more efficient use of natural resources through the integrated management of available soil nutrients, water, and biological resources, and enhances use efficiency of external inputs. Due to apparent benefits of CA, it is increasingly being adopted and now covers about 180 million hectares (Mha) worldwide. However, in South Asia its spread is low (<5 Mha), mostly concentrated in the Indo-Gangetic Plains (IGP). In this region, one of the serious issues is “residue burning” with severe environmental impacts. A huge amount of crop residue left over after the combine harvest of rice has forced farmers to practice widespread residue burning (∼140 M tonnes) to cope with excessive stubble and also for timely planting/sowing of succeeding crops. In rice-wheat cropping systems, which cover more than 10 Mha in the IGP, CA practices are relatively more accepted by farmers. In these systems, any delay in sowing leads to yield penalty of 1–1.5% per day after the optimum sowing date of wheat. The strong adoption of CA practices in IGP is mainly to overcome delayed sowing due to the field preparation and control of weeds, timely planting, and also escape from terminal heat during the grain-filling stage. Major challenges to CA adoption in South Asia are small land holdings (<1 ha), low technological reach to farmers, nonavailability of suitable farm implements for small farm holders, and the staunch conventional farming mind-set. South Asia region consists of many countries of diverse agro-ecologies with contrasting farming systems and management. This region, recently known for rapid economic growth and increasing population, necessitates higher food production and also hot-spots for adoption of CA technologies. Therefore, in this review critically explores the possibility, extent of area, prospects, challenges, and benefits of CA in South Asia. HIGHLIGHTS Conservation agriculture (CA), consisting of reduced or no-tillage and crop residue retention, is a self–sustainable system which offers an alternative to crop residue burning. The CA approach improves soil health by increasing soil organic carbon (SOC) and aggregation and also conserves soil, water and energy than conventional farming systems. South Asian countries are suitable for adoption of CA practices but the area under CA remains low (<5 Mha) as compared to the global area (180 Mha). Adoption of CA in South Asia has skewed distribution, mainly in Indo-Gangetic Plains (IGP) in India, Pakistan, Nepal and Bangladesh in South Asia. Development of herbicide-resistant weed species and weed shift by continuous application of herbicides are the major challenges in adoption of CA. The traditional-farming mind-set, socio-economic conditions, small farm-holdings, weed and residue management, and non-availability of suitable machinery are key constraints to the low adoption of CA practices in South Asia.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.90
自引率
1.40%
发文量
15
审稿时长
>12 weeks
期刊介绍: Critical Reviews in Plant Sciences focuses on presenting in-depth and up-to-date reviews of timely and/or cutting-edge subjects in the broad discipline of plant science, ranging from molecular biology/biochemistry through the areas of cell biology, plant pathology and physiology, genetics, classical botany, and ecology, to practical agricultural applications. Articles in the journal provide an up-to-date literature base for researchers and students, pointing the way towards future research needs. The journal is also a significant source of credible, objective information to aid decision makers at all levels.
期刊最新文献
Advances in Antisense Oligo Technology for Sustainable Crop Protection Role of Exogenous Melatonin in Plant Biotechnology: Physiological and Applied Aspects Integration of the Plant-Specific PLATZ Transcription Factors into Gene Regulatory Networks Controlling Developmental Processes Plant SABATH Methyltransferases: Diverse Functions, Unusual Reaction Mechanisms and Complex Evolution MicroRNA: A Mobile Signal Mediating Information Exchange within and beyond Plant Organisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1