TRPO工艺脱硝后模拟高放废液萃取过程中界面杂质的消除

IF 1.8 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Solvent Extraction and Ion Exchange Pub Date : 2023-02-22 DOI:10.1080/07366299.2023.2182646
Zhaofei Zhang, W. Duan, Xinwei Cheng, Wenbing Li, Jing Chen, Jianchen Wang, T. Sun
{"title":"TRPO工艺脱硝后模拟高放废液萃取过程中界面杂质的消除","authors":"Zhaofei Zhang, W. Duan, Xinwei Cheng, Wenbing Li, Jing Chen, Jianchen Wang, T. Sun","doi":"10.1080/07366299.2023.2182646","DOIUrl":null,"url":null,"abstract":"ABSTRACT Denitration is a proven technique that can reduce the nitric acid concentration of high-level liquid waste (HLLW) to meet the aqueous acidity requirement of the TRPO (TriAlkyl Phosphine Oxide) process. However, interfacial crud is generated in the TRPO extraction of the HLLW after denitration. In this work, the interfacial crud was characterized by Fourier-transform infrared spectroscopy and dynamic light scattering. The extraction distribution ratio of zirconium by 30% TRPO in kerosene decreases dramatically after the simulated HLLW is denitrated, and we proposed that the presence of zirconium in the simulated HLLW after denitration is responsible for the generation of interfacial crud. Using ammonium molybdate as a precipitant, the concentration of zirconium in the simulated HLLW was successfully reduced without essentially changing the concentration of other metal ions. The effects of reaction time, temperature, and amount of ammonium molybdate added on the zirconium removal process were investigated and the precipitates formed in the removal of zirconium were characterized by scanning electron microscope, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. Finally, after reducing the concentration of zirconium in the simulated HLLW to below 10 mg/L by using ammonium molybdate, the extraction experiment was performed again and no interfacial crud was observed.","PeriodicalId":22002,"journal":{"name":"Solvent Extraction and Ion Exchange","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Elimination of the Interfacial Crud in the Extraction of Simulated High-Level Liquid Waste After Denitration in the TRPO Process\",\"authors\":\"Zhaofei Zhang, W. Duan, Xinwei Cheng, Wenbing Li, Jing Chen, Jianchen Wang, T. Sun\",\"doi\":\"10.1080/07366299.2023.2182646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Denitration is a proven technique that can reduce the nitric acid concentration of high-level liquid waste (HLLW) to meet the aqueous acidity requirement of the TRPO (TriAlkyl Phosphine Oxide) process. However, interfacial crud is generated in the TRPO extraction of the HLLW after denitration. In this work, the interfacial crud was characterized by Fourier-transform infrared spectroscopy and dynamic light scattering. The extraction distribution ratio of zirconium by 30% TRPO in kerosene decreases dramatically after the simulated HLLW is denitrated, and we proposed that the presence of zirconium in the simulated HLLW after denitration is responsible for the generation of interfacial crud. Using ammonium molybdate as a precipitant, the concentration of zirconium in the simulated HLLW was successfully reduced without essentially changing the concentration of other metal ions. The effects of reaction time, temperature, and amount of ammonium molybdate added on the zirconium removal process were investigated and the precipitates formed in the removal of zirconium were characterized by scanning electron microscope, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. Finally, after reducing the concentration of zirconium in the simulated HLLW to below 10 mg/L by using ammonium molybdate, the extraction experiment was performed again and no interfacial crud was observed.\",\"PeriodicalId\":22002,\"journal\":{\"name\":\"Solvent Extraction and Ion Exchange\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solvent Extraction and Ion Exchange\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/07366299.2023.2182646\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solvent Extraction and Ion Exchange","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/07366299.2023.2182646","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

摘要脱硝是一种成熟的技术,可以降低高水平废液(HLLW)的硝酸浓度,以满足TRPO(三烷基膦氧化物)工艺的水酸度要求。而脱硝后的高废液在TRPO萃取过程中会产生界面杂质。本文采用傅里叶变换红外光谱和动态光散射对界面杂质进行了表征。模拟高废液脱硝后,煤油中30% TRPO对锆的萃取分布比显著降低,提出脱硝后模拟高废液中锆的存在是界面结垢产生的原因。采用钼酸铵作为沉淀剂,在不改变其他金属离子浓度的情况下,成功地降低了模拟高废液中锆的浓度。研究了反应时间、温度和钼酸铵添加量对锆去除过程的影响,并利用扫描电镜、x射线能谱和x射线光电子能谱对锆去除过程中形成的沉淀物进行了表征。最后,用钼酸铵将模拟高废液中的锆浓度降低至10 mg/L以下后,再次进行萃取实验,未观察到界面杂质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Elimination of the Interfacial Crud in the Extraction of Simulated High-Level Liquid Waste After Denitration in the TRPO Process
ABSTRACT Denitration is a proven technique that can reduce the nitric acid concentration of high-level liquid waste (HLLW) to meet the aqueous acidity requirement of the TRPO (TriAlkyl Phosphine Oxide) process. However, interfacial crud is generated in the TRPO extraction of the HLLW after denitration. In this work, the interfacial crud was characterized by Fourier-transform infrared spectroscopy and dynamic light scattering. The extraction distribution ratio of zirconium by 30% TRPO in kerosene decreases dramatically after the simulated HLLW is denitrated, and we proposed that the presence of zirconium in the simulated HLLW after denitration is responsible for the generation of interfacial crud. Using ammonium molybdate as a precipitant, the concentration of zirconium in the simulated HLLW was successfully reduced without essentially changing the concentration of other metal ions. The effects of reaction time, temperature, and amount of ammonium molybdate added on the zirconium removal process were investigated and the precipitates formed in the removal of zirconium were characterized by scanning electron microscope, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. Finally, after reducing the concentration of zirconium in the simulated HLLW to below 10 mg/L by using ammonium molybdate, the extraction experiment was performed again and no interfacial crud was observed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
5.00%
发文量
15
审稿时长
8.4 months
期刊介绍: Solvent Extraction and Ion Exchange is an international journal that publishes original research papers, reviews, and notes that address all aspects of solvent extraction, ion exchange, and closely related methods involving, for example, liquid membranes, extraction chromatography, supercritical fluids, ionic liquids, microfluidics, and adsorption. We welcome submissions that look at: The underlying principles in solvent extraction and ion exchange; Solvent extraction and ion exchange process development; New materials or reagents, their syntheses and properties; Computational methods of molecular design and simulation; Advances in equipment, fluid dynamics, and engineering; Interfacial phenomena, kinetics, and coalescence; Spectroscopic and diffraction analysis of structure and dynamics; Host-guest chemistry, ion receptors, and molecular recognition.
期刊最新文献
Optimized Lithium(I) Recovery from Geothermal Brine of Germencik, Türkiye, Utilizing an Aminomethyl phosphonic Acid Chelating Resin Efficient Copper Extraction from Industrial Dilute Solutions Using Air-Assisted Solvent Extraction An Advanced Solvent for the Caustic-Side Solvent Extraction of Cesium from Nuclear Waste: Comparing Lipophilic Guanidines for Improved Hydrolytic Stability Enhanced Separation of Americium and Curium in Cyanex301 System by Using Formic Acid and Glycolic Acid as Stripping Chelates Selective Extraction of Yttrium from Zr-Y-Nb-Th-Rich Microgranite Dike Leach Solution Using Cyanex 921
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1