Antonio Caparrini, J. Arroyo, Laura Pérez-Molina, J. Sánchez-Hernández
{"title":"电子舞曲分类学中的自动子类型分类","authors":"Antonio Caparrini, J. Arroyo, Laura Pérez-Molina, J. Sánchez-Hernández","doi":"10.1080/09298215.2020.1761399","DOIUrl":null,"url":null,"abstract":"Electronic dance music (EDM) is a genre where thousands of new songs are released every week. The list of EDM subgenres considered is long, but it also evolves according to trends and musical tastes. With this in view, we have retrieved two sets of over 2000 songs separated by more than a year. Songs belong to the top 100 list of an EDM website taxonomy of more than 20 subgenres that changed in the period considered. We test the effectiveness of automatic classification on these sets and delve into the results to determine, for example, which subgenres perform better and worse, how the performance of some subgenres change in the two sets, or how some subgenres are often confused with one another. We illustrate confusion among subgenres by a graph and interpret it as a taxonomic map of EDM. We also assess the deterioration of the performance of the classifier of the first set when used to classify the second one. Finally, we study how the new subgenres that appear in the second set relate to the old ones with the help of the classifier of the first set. As a result, this work illustrates the main challenges that EDM poses to automatic classification and provides insights into where are the limits of this approach.","PeriodicalId":16553,"journal":{"name":"Journal of New Music Research","volume":"49 1","pages":"269 - 284"},"PeriodicalIF":1.1000,"publicationDate":"2020-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09298215.2020.1761399","citationCount":"9","resultStr":"{\"title\":\"Automatic subgenre classification in an electronic dance music taxonomy\",\"authors\":\"Antonio Caparrini, J. Arroyo, Laura Pérez-Molina, J. Sánchez-Hernández\",\"doi\":\"10.1080/09298215.2020.1761399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electronic dance music (EDM) is a genre where thousands of new songs are released every week. The list of EDM subgenres considered is long, but it also evolves according to trends and musical tastes. With this in view, we have retrieved two sets of over 2000 songs separated by more than a year. Songs belong to the top 100 list of an EDM website taxonomy of more than 20 subgenres that changed in the period considered. We test the effectiveness of automatic classification on these sets and delve into the results to determine, for example, which subgenres perform better and worse, how the performance of some subgenres change in the two sets, or how some subgenres are often confused with one another. We illustrate confusion among subgenres by a graph and interpret it as a taxonomic map of EDM. We also assess the deterioration of the performance of the classifier of the first set when used to classify the second one. Finally, we study how the new subgenres that appear in the second set relate to the old ones with the help of the classifier of the first set. As a result, this work illustrates the main challenges that EDM poses to automatic classification and provides insights into where are the limits of this approach.\",\"PeriodicalId\":16553,\"journal\":{\"name\":\"Journal of New Music Research\",\"volume\":\"49 1\",\"pages\":\"269 - 284\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/09298215.2020.1761399\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of New Music Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/09298215.2020.1761399\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of New Music Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/09298215.2020.1761399","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Automatic subgenre classification in an electronic dance music taxonomy
Electronic dance music (EDM) is a genre where thousands of new songs are released every week. The list of EDM subgenres considered is long, but it also evolves according to trends and musical tastes. With this in view, we have retrieved two sets of over 2000 songs separated by more than a year. Songs belong to the top 100 list of an EDM website taxonomy of more than 20 subgenres that changed in the period considered. We test the effectiveness of automatic classification on these sets and delve into the results to determine, for example, which subgenres perform better and worse, how the performance of some subgenres change in the two sets, or how some subgenres are often confused with one another. We illustrate confusion among subgenres by a graph and interpret it as a taxonomic map of EDM. We also assess the deterioration of the performance of the classifier of the first set when used to classify the second one. Finally, we study how the new subgenres that appear in the second set relate to the old ones with the help of the classifier of the first set. As a result, this work illustrates the main challenges that EDM poses to automatic classification and provides insights into where are the limits of this approach.
期刊介绍:
The Journal of New Music Research (JNMR) publishes material which increases our understanding of music and musical processes by systematic, scientific and technological means. Research published in the journal is innovative, empirically grounded and often, but not exclusively, uses quantitative methods. Articles are both musically relevant and scientifically rigorous, giving full technical details. No bounds are placed on the music or musical behaviours at issue: popular music, music of diverse cultures and the canon of western classical music are all within the Journal’s scope. Articles deal with theory, analysis, composition, performance, uses of music, instruments and other music technologies. The Journal was founded in 1972 with the original title Interface to reflect its interdisciplinary nature, drawing on musicology (including music theory), computer science, psychology, acoustics, philosophy, and other disciplines.