{"title":"社会网络上矩阵指数的亚线性列行为","authors":"D. Gleich, Kyle Kloster","doi":"10.1080/15427951.2014.971203","DOIUrl":null,"url":null,"abstract":"We consider stochastic transition matrices from large social and information networks. For these matrices, we describe and evaluate three fast methods to estimate one column of the matrix exponential. The methods are designed to exploit the properties inherent in social networks, such as a power-law degree distribution. Using only this property, we prove that one of our three algorithms has a sublinear runtime. We present further experimental evidence showing that all three of them run quickly on social networks with billions of edges, and they accurately identify the largest elements of the column.","PeriodicalId":38105,"journal":{"name":"Internet Mathematics","volume":"11 1","pages":"352 - 384"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15427951.2014.971203","citationCount":"13","resultStr":"{\"title\":\"Sublinear Column-wise Actions of the Matrix Exponential on Social Networks\",\"authors\":\"D. Gleich, Kyle Kloster\",\"doi\":\"10.1080/15427951.2014.971203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider stochastic transition matrices from large social and information networks. For these matrices, we describe and evaluate three fast methods to estimate one column of the matrix exponential. The methods are designed to exploit the properties inherent in social networks, such as a power-law degree distribution. Using only this property, we prove that one of our three algorithms has a sublinear runtime. We present further experimental evidence showing that all three of them run quickly on social networks with billions of edges, and they accurately identify the largest elements of the column.\",\"PeriodicalId\":38105,\"journal\":{\"name\":\"Internet Mathematics\",\"volume\":\"11 1\",\"pages\":\"352 - 384\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15427951.2014.971203\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15427951.2014.971203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15427951.2014.971203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Sublinear Column-wise Actions of the Matrix Exponential on Social Networks
We consider stochastic transition matrices from large social and information networks. For these matrices, we describe and evaluate three fast methods to estimate one column of the matrix exponential. The methods are designed to exploit the properties inherent in social networks, such as a power-law degree distribution. Using only this property, we prove that one of our three algorithms has a sublinear runtime. We present further experimental evidence showing that all three of them run quickly on social networks with billions of edges, and they accurately identify the largest elements of the column.