海量图上最大团问题的快速算法及其在重叠社区检测中的应用

Q3 Mathematics Internet Mathematics Pub Date : 2014-11-26 DOI:10.1080/15427951.2014.986778
B. Pattabiraman, Md. Mostofa Ali Patwary, A. Gebremedhin, W. Liao, A. Choudhary
{"title":"海量图上最大团问题的快速算法及其在重叠社区检测中的应用","authors":"B. Pattabiraman, Md. Mostofa Ali Patwary, A. Gebremedhin, W. Liao, A. Choudhary","doi":"10.1080/15427951.2014.986778","DOIUrl":null,"url":null,"abstract":"The maximum clique problem is a well-known NP-hard problem with applications in data mining, network analysis, information retrieval, and many other areas related to the World Wide Web. There exist several algorithms for the problem, with acceptable runtimes for certain classes of graphs, but many of them are infeasible for massive graphs. We present a new exact algorithm that employs novel pruning techniques and is able to find maximum cliques in very large, sparse graphs quickly. Extensive experiments on different kinds of synthetic and real-world graphs show that our new algorithm can be orders of magnitude faster than existing algorithms. We also present a heuristic that runs orders of magnitude faster than the exact algorithm while providing optimal or near-optimal solutions. We illustrate a simple application of the algorithms in developing methods for detection of overlapping communities in networks.","PeriodicalId":38105,"journal":{"name":"Internet Mathematics","volume":"11 1","pages":"421 - 448"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15427951.2014.986778","citationCount":"50","resultStr":"{\"title\":\"Fast Algorithms for the Maximum Clique Problem on Massive Graphs with Applications to Overlapping Community Detection\",\"authors\":\"B. Pattabiraman, Md. Mostofa Ali Patwary, A. Gebremedhin, W. Liao, A. Choudhary\",\"doi\":\"10.1080/15427951.2014.986778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The maximum clique problem is a well-known NP-hard problem with applications in data mining, network analysis, information retrieval, and many other areas related to the World Wide Web. There exist several algorithms for the problem, with acceptable runtimes for certain classes of graphs, but many of them are infeasible for massive graphs. We present a new exact algorithm that employs novel pruning techniques and is able to find maximum cliques in very large, sparse graphs quickly. Extensive experiments on different kinds of synthetic and real-world graphs show that our new algorithm can be orders of magnitude faster than existing algorithms. We also present a heuristic that runs orders of magnitude faster than the exact algorithm while providing optimal or near-optimal solutions. We illustrate a simple application of the algorithms in developing methods for detection of overlapping communities in networks.\",\"PeriodicalId\":38105,\"journal\":{\"name\":\"Internet Mathematics\",\"volume\":\"11 1\",\"pages\":\"421 - 448\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15427951.2014.986778\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15427951.2014.986778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15427951.2014.986778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 50

摘要

最大团问题是一个众所周知的np困难问题,在数据挖掘、网络分析、信息检索以及与万维网相关的许多其他领域都有应用。有几种算法可以解决这个问题,它们对于某些类型的图具有可接受的运行时间,但其中许多算法对于大规模图是不可行的。我们提出了一种新的精确算法,该算法采用了新颖的修剪技术,能够快速地在非常大的稀疏图中找到最大的团。在不同种类的合成图和真实世界的图上进行的大量实验表明,我们的新算法可以比现有算法快几个数量级。我们还提出了一种启发式算法,它的运行速度比精确算法快几个数量级,同时提供了最优或接近最优的解决方案。我们举例说明了算法在开发网络中重叠社区检测方法中的一个简单应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast Algorithms for the Maximum Clique Problem on Massive Graphs with Applications to Overlapping Community Detection
The maximum clique problem is a well-known NP-hard problem with applications in data mining, network analysis, information retrieval, and many other areas related to the World Wide Web. There exist several algorithms for the problem, with acceptable runtimes for certain classes of graphs, but many of them are infeasible for massive graphs. We present a new exact algorithm that employs novel pruning techniques and is able to find maximum cliques in very large, sparse graphs quickly. Extensive experiments on different kinds of synthetic and real-world graphs show that our new algorithm can be orders of magnitude faster than existing algorithms. We also present a heuristic that runs orders of magnitude faster than the exact algorithm while providing optimal or near-optimal solutions. We illustrate a simple application of the algorithms in developing methods for detection of overlapping communities in networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Internet Mathematics
Internet Mathematics Mathematics-Applied Mathematics
自引率
0.00%
发文量
0
期刊最新文献
Graph search via star sampling with and without replacement Preferential Placement for Community Structure Formation A Multi-type Preferential Attachment Tree Editorial Board EOV A Theory of Network Security: Principles of Natural Selection and Combinatorics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1