A. Siddique, Shuo Gu, R. Witte, M. Ghahremani, Chidubem A. Nwokoye, A. Aslani, R. Kruk, V. Provenzano, L. H. Bennett, E. Torre
{"title":"Co/Pt薄膜铁磁体的电场控制磁化开关","authors":"A. Siddique, Shuo Gu, R. Witte, M. Ghahremani, Chidubem A. Nwokoye, A. Aslani, R. Kruk, V. Provenzano, L. H. Bennett, E. Torre","doi":"10.1080/23311940.2016.1139435","DOIUrl":null,"url":null,"abstract":"Abstract A study of dynamic and reversible voltage-controlled magnetization switching in ferromagnetic Co/Pt thin film with perpendicular magnetic anisotropy at room temperature is presented. The change in the magnetic properties of the system is observed in a relatively thick film of 15 nm. A surface charge is induced by the formation of electrochemical double layer between the metallic thin film and non-aqueous lithium LiClO4 electrolyte to manipulate the magnetism. The change in the magnetic properties occurred by the application of an external electric field. As the negative voltage was increased, the coercivity and the switching magnetic field decreased thus activating magnetization switching. The results are envisaged to lead to faster and ultra-low-power magnetization switching as compared to spin-transfer torque (STT) switching in spintronic devices.","PeriodicalId":43050,"journal":{"name":"Cogent Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23311940.2016.1139435","citationCount":"0","resultStr":"{\"title\":\"Electric field-controlled magnetization switching in Co/Pt thin-film ferromagnets\",\"authors\":\"A. Siddique, Shuo Gu, R. Witte, M. Ghahremani, Chidubem A. Nwokoye, A. Aslani, R. Kruk, V. Provenzano, L. H. Bennett, E. Torre\",\"doi\":\"10.1080/23311940.2016.1139435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A study of dynamic and reversible voltage-controlled magnetization switching in ferromagnetic Co/Pt thin film with perpendicular magnetic anisotropy at room temperature is presented. The change in the magnetic properties of the system is observed in a relatively thick film of 15 nm. A surface charge is induced by the formation of electrochemical double layer between the metallic thin film and non-aqueous lithium LiClO4 electrolyte to manipulate the magnetism. The change in the magnetic properties occurred by the application of an external electric field. As the negative voltage was increased, the coercivity and the switching magnetic field decreased thus activating magnetization switching. The results are envisaged to lead to faster and ultra-low-power magnetization switching as compared to spin-transfer torque (STT) switching in spintronic devices.\",\"PeriodicalId\":43050,\"journal\":{\"name\":\"Cogent Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23311940.2016.1139435\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cogent Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23311940.2016.1139435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23311940.2016.1139435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electric field-controlled magnetization switching in Co/Pt thin-film ferromagnets
Abstract A study of dynamic and reversible voltage-controlled magnetization switching in ferromagnetic Co/Pt thin film with perpendicular magnetic anisotropy at room temperature is presented. The change in the magnetic properties of the system is observed in a relatively thick film of 15 nm. A surface charge is induced by the formation of electrochemical double layer between the metallic thin film and non-aqueous lithium LiClO4 electrolyte to manipulate the magnetism. The change in the magnetic properties occurred by the application of an external electric field. As the negative voltage was increased, the coercivity and the switching magnetic field decreased thus activating magnetization switching. The results are envisaged to lead to faster and ultra-low-power magnetization switching as compared to spin-transfer torque (STT) switching in spintronic devices.