具有二氧化钛光阳极骨架的N719染料的界间性质和运动学以及不同电解质的光谱响应

T. Abodunrin, A. Boyo, M. Usikalu
{"title":"具有二氧化钛光阳极骨架的N719染料的界间性质和运动学以及不同电解质的光谱响应","authors":"T. Abodunrin, A. Boyo, M. Usikalu","doi":"10.1080/23311940.2018.1498146","DOIUrl":null,"url":null,"abstract":"Abstract Titanium oxide is as ancient in age as our planet but its use for photoanode is more recent. It exists naturally as rutile (the second most abundant), anatase and brookite ores. The anatase several metastable states trigger diverse spectral responses with Magnifera Indica Linn. (M.indica L) dye as it is synthesized with an N719 dye grown on its matrix. Facile doctor blade method and high temperature sintering at 723 K were used in fabrication. Doping of titanium oxide in effect lowers the band gap of TiO2 for photo-excitation caused by a bathochromic shift and simultaneously decreases the rate of recombination in photogenerated electron–hole pairs. This study explored the visible light induced photocatalytic action of doped M.indica L DSSC towards reduction of titanium oxide bandgap. The SEM micrographs reveal the molecular interactions and the interplay as electrolytes percolate the intricate N719 dye/Titania framework. Detailed analysis stem from comparison of M.indica L crude faction and the batch separated faction using FTIR spectroscopy. The absorbance peak, rates of reaction and % transmittance identify the particular chromophores responsible for the reaction. Result shows the batch-separated hexane faction approximately 1000 times more efficient than its crude faction although the ff of the crude was only about twice that of the hexane faction. The optical study showed that doping ions lead to an increase in the absorption edge wavelength, and a decrease in the band gap energy of TiO2 nanoparticles. The doped TiO2 nanoparticles in general showed higher photocatalytic activities than the pure ones.","PeriodicalId":43050,"journal":{"name":"Cogent Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23311940.2018.1498146","citationCount":"3","resultStr":"{\"title\":\"The interboundary properties and kinematics of N719 dye with titania photoanode framework and spectral responses with different electrolytes\",\"authors\":\"T. Abodunrin, A. Boyo, M. Usikalu\",\"doi\":\"10.1080/23311940.2018.1498146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Titanium oxide is as ancient in age as our planet but its use for photoanode is more recent. It exists naturally as rutile (the second most abundant), anatase and brookite ores. The anatase several metastable states trigger diverse spectral responses with Magnifera Indica Linn. (M.indica L) dye as it is synthesized with an N719 dye grown on its matrix. Facile doctor blade method and high temperature sintering at 723 K were used in fabrication. Doping of titanium oxide in effect lowers the band gap of TiO2 for photo-excitation caused by a bathochromic shift and simultaneously decreases the rate of recombination in photogenerated electron–hole pairs. This study explored the visible light induced photocatalytic action of doped M.indica L DSSC towards reduction of titanium oxide bandgap. The SEM micrographs reveal the molecular interactions and the interplay as electrolytes percolate the intricate N719 dye/Titania framework. Detailed analysis stem from comparison of M.indica L crude faction and the batch separated faction using FTIR spectroscopy. The absorbance peak, rates of reaction and % transmittance identify the particular chromophores responsible for the reaction. Result shows the batch-separated hexane faction approximately 1000 times more efficient than its crude faction although the ff of the crude was only about twice that of the hexane faction. The optical study showed that doping ions lead to an increase in the absorption edge wavelength, and a decrease in the band gap energy of TiO2 nanoparticles. The doped TiO2 nanoparticles in general showed higher photocatalytic activities than the pure ones.\",\"PeriodicalId\":43050,\"journal\":{\"name\":\"Cogent Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23311940.2018.1498146\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cogent Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23311940.2018.1498146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23311940.2018.1498146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

摘要氧化钛与我们的地球一样古老,但其用于光阳极是最近的事情。它以金红石(储量第二丰富)、锐钛矿和brookite矿的形式自然存在。锐钛矿的几个亚稳态触发了不同的光谱响应。它是用生长在其基质上的N719染料合成的。采用易刀法和723 K高温烧结制备。氧化钛的掺杂有效地降低了TiO2的光激发带隙,同时降低了光生电子-空穴对的复合速率。本研究探讨了在可见光诱导下,掺杂m.i indica L DSSC对氧化钛带隙减小的光催化作用。SEM显微图揭示了电解质渗透到复杂的N719染料/二氧化钛框架中的分子相互作用和相互作用。通过FTIR光谱对粗馏分和间歇分离馏分进行了比较。吸收峰,反应速率和%透射率确定负责反应的特定发色团。结果表明,间歇分离的正己烷馏分的效率是粗馏分的1000倍左右,而粗馏分的效率仅为正己烷馏分的2倍左右。光学研究表明,掺杂离子导致TiO2纳米粒子的吸收边波长增加,带隙能降低。总的来说,掺杂的TiO2纳米粒子比纯掺杂的TiO2纳米粒子具有更高的光催化活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The interboundary properties and kinematics of N719 dye with titania photoanode framework and spectral responses with different electrolytes
Abstract Titanium oxide is as ancient in age as our planet but its use for photoanode is more recent. It exists naturally as rutile (the second most abundant), anatase and brookite ores. The anatase several metastable states trigger diverse spectral responses with Magnifera Indica Linn. (M.indica L) dye as it is synthesized with an N719 dye grown on its matrix. Facile doctor blade method and high temperature sintering at 723 K were used in fabrication. Doping of titanium oxide in effect lowers the band gap of TiO2 for photo-excitation caused by a bathochromic shift and simultaneously decreases the rate of recombination in photogenerated electron–hole pairs. This study explored the visible light induced photocatalytic action of doped M.indica L DSSC towards reduction of titanium oxide bandgap. The SEM micrographs reveal the molecular interactions and the interplay as electrolytes percolate the intricate N719 dye/Titania framework. Detailed analysis stem from comparison of M.indica L crude faction and the batch separated faction using FTIR spectroscopy. The absorbance peak, rates of reaction and % transmittance identify the particular chromophores responsible for the reaction. Result shows the batch-separated hexane faction approximately 1000 times more efficient than its crude faction although the ff of the crude was only about twice that of the hexane faction. The optical study showed that doping ions lead to an increase in the absorption edge wavelength, and a decrease in the band gap energy of TiO2 nanoparticles. The doped TiO2 nanoparticles in general showed higher photocatalytic activities than the pure ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cogent Physics
Cogent Physics PHYSICS, MULTIDISCIPLINARY-
自引率
0.00%
发文量
0
期刊最新文献
All-optical XOR gates based on dual semiconductor optical amplifiers Different methods to achieve hybrid mode locking Radon radioactivity measurements in underground water: A comparison between different diagnostics techniques A dynamic closure modeling framework for large eddy simulation using approximate deconvolution: Burgers equation Irreversible thermodynamics of ideal plastic deformation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1