用于农业机器人的草地数据集

IF 4.2 2区 计算机科学 Q2 ROBOTICS Journal of Field Robotics Pub Date : 2023-05-23 DOI:10.1002/rob.22196
Ronja Güldenring, Frits K. van Evert, Lazaros Nalpantidis
{"title":"用于农业机器人的草地数据集","authors":"Ronja Güldenring,&nbsp;Frits K. van Evert,&nbsp;Lazaros Nalpantidis","doi":"10.1002/rob.22196","DOIUrl":null,"url":null,"abstract":"<p>Computer vision can lead toward more sustainable agricultural production by enabling robotic precision agriculture. Vision-equipped robots are being deployed in the fields to take care of crops and control weeds. However, publicly available agricultural datasets containing both image data as well as data from navigational robot sensors are scarce. Our real-world dataset RumexWeeds targets the detection of the grassland weeds: <i>Rumex obtusifolius</i> L. and <i>Rumex crispus</i> L. RumexWeeds includes whole image sequences instead of individual static images, which is rare for computer vision image datasets, yet crucial for robotic applications. It allows for more robust object detection, incorporating temporal aspects and considering different viewpoints of the same object. Furthermore, RumexWeeds includes data from additional navigational robot sensors—GNSS, IMU and odometry—which can increase robustness, when additionally fed to detection models. In total the dataset includes 5510 images with 15,519 manual bounding box annotations collected at three different farms and four different days in summer and autumn 2021. Additionally, RumexWeeds includes a subset of 340 ground truth pixels-wise annotations. The dataset is publicly available at https://dtu-pas.github.io/RumexWeeds/. In this paper we also use RumexWeeds to provide baseline weed detection results considering a state-of-the-art object detector; in this way we are elucidating interesting characteristics of the dataset.</p>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"40 6","pages":"1639-1656"},"PeriodicalIF":4.2000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/rob.22196","citationCount":"3","resultStr":"{\"title\":\"RumexWeeds: A grassland dataset for agricultural robotics\",\"authors\":\"Ronja Güldenring,&nbsp;Frits K. van Evert,&nbsp;Lazaros Nalpantidis\",\"doi\":\"10.1002/rob.22196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Computer vision can lead toward more sustainable agricultural production by enabling robotic precision agriculture. Vision-equipped robots are being deployed in the fields to take care of crops and control weeds. However, publicly available agricultural datasets containing both image data as well as data from navigational robot sensors are scarce. Our real-world dataset RumexWeeds targets the detection of the grassland weeds: <i>Rumex obtusifolius</i> L. and <i>Rumex crispus</i> L. RumexWeeds includes whole image sequences instead of individual static images, which is rare for computer vision image datasets, yet crucial for robotic applications. It allows for more robust object detection, incorporating temporal aspects and considering different viewpoints of the same object. Furthermore, RumexWeeds includes data from additional navigational robot sensors—GNSS, IMU and odometry—which can increase robustness, when additionally fed to detection models. In total the dataset includes 5510 images with 15,519 manual bounding box annotations collected at three different farms and four different days in summer and autumn 2021. Additionally, RumexWeeds includes a subset of 340 ground truth pixels-wise annotations. The dataset is publicly available at https://dtu-pas.github.io/RumexWeeds/. In this paper we also use RumexWeeds to provide baseline weed detection results considering a state-of-the-art object detector; in this way we are elucidating interesting characteristics of the dataset.</p>\",\"PeriodicalId\":192,\"journal\":{\"name\":\"Journal of Field Robotics\",\"volume\":\"40 6\",\"pages\":\"1639-1656\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/rob.22196\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Field Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/rob.22196\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Field Robotics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rob.22196","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 3

摘要

计算机视觉可以通过实现机器人精准农业来实现更可持续的农业生产。配备视觉设备的机器人被部署在田地里照顾庄稼和控制杂草。然而,包含图像数据和导航机器人传感器数据的公开可用农业数据集很少。我们的真实世界数据集rumexweed的目标是检测草地杂草:Rumex obtusifolius L.和Rumex crispus L. rumexweed包括整个图像序列,而不是单个静态图像,这对于计算机视觉图像数据集来说是罕见的,但对于机器人应用至关重要。它允许更强大的目标检测,结合时间方面和考虑同一对象的不同视点。此外,rumexweed还包括来自其他导航机器人传感器(gnss、IMU和里程表)的数据,当这些数据被额外输入到检测模型中时,可以提高鲁棒性。总的来说,该数据集包括5510张图像和15519个手动边界框注释,这些图像是在2021年夏季和秋季的三个不同的农场和四个不同的日期收集的。此外,rumexweed还包括340个基于真实像素的注释子集。该数据集可在https://dtu-pas.github.io/RumexWeeds/上公开获取。在本文中,我们还使用rumexweed来提供基线杂草检测结果,考虑到最先进的目标检测器;通过这种方式,我们阐明了数据集的有趣特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RumexWeeds: A grassland dataset for agricultural robotics

Computer vision can lead toward more sustainable agricultural production by enabling robotic precision agriculture. Vision-equipped robots are being deployed in the fields to take care of crops and control weeds. However, publicly available agricultural datasets containing both image data as well as data from navigational robot sensors are scarce. Our real-world dataset RumexWeeds targets the detection of the grassland weeds: Rumex obtusifolius L. and Rumex crispus L. RumexWeeds includes whole image sequences instead of individual static images, which is rare for computer vision image datasets, yet crucial for robotic applications. It allows for more robust object detection, incorporating temporal aspects and considering different viewpoints of the same object. Furthermore, RumexWeeds includes data from additional navigational robot sensors—GNSS, IMU and odometry—which can increase robustness, when additionally fed to detection models. In total the dataset includes 5510 images with 15,519 manual bounding box annotations collected at three different farms and four different days in summer and autumn 2021. Additionally, RumexWeeds includes a subset of 340 ground truth pixels-wise annotations. The dataset is publicly available at https://dtu-pas.github.io/RumexWeeds/. In this paper we also use RumexWeeds to provide baseline weed detection results considering a state-of-the-art object detector; in this way we are elucidating interesting characteristics of the dataset.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Field Robotics
Journal of Field Robotics 工程技术-机器人学
CiteScore
15.00
自引率
3.60%
发文量
80
审稿时长
6 months
期刊介绍: The Journal of Field Robotics seeks to promote scholarly publications dealing with the fundamentals of robotics in unstructured and dynamic environments. The Journal focuses on experimental robotics and encourages publication of work that has both theoretical and practical significance.
期刊最新文献
Issue Information Cover Image, Volume 41, Number 8, December 2024 Issue Information Issue Information A CIELAB fusion-based generative adversarial network for reliable sand–dust removal in open-pit mines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1