基于人工神经网络的波高预测系统

IF 1.9 3区 工程技术 Q3 ENGINEERING, CIVIL Coastal Engineering Journal Pub Date : 2023-03-21 DOI:10.1080/21664250.2023.2190002
Elad Dakar, J. M. Fernández Jaramillo, I. Gertman, R. Mayerle, R. Goldman
{"title":"基于人工神经网络的波高预测系统","authors":"Elad Dakar, J. M. Fernández Jaramillo, I. Gertman, R. Mayerle, R. Goldman","doi":"10.1080/21664250.2023.2190002","DOIUrl":null,"url":null,"abstract":"ABSTRACT We present a system for predicting the hourly significant wave height at a specific wave measurement station in the middle of Israel’s Mediterranean coast (Hadera). Our system uses an artificial neural network (ANN) composed of two sub-networks. We evaluate the importance of different inputs to the system. The input includes wind forecast data from the SKIRON atmospheric modeling system, wave forecast for the station’s location given by the SWAN wave model, and observed wave data. Our system pre-processes the wind data using a spatial filtering scheme and then enters it into the first sub-network in the form of a multidimensional tensor. We take special care to interconnect the tensor elements through a dimensional permutation that leads the ANN to sum elements along all the tensor’s dimensions. Our system groups the output of the first sub-network with the rest of the input and feeds it to the second sub-network that gives the prediction. Our ANN system outperforms the SWAN wave model in estimating wave heights over 1.5 meters. We obtain the best performance when either all input components are used or just wind and observations. Reimplementation of the system at Ashkelon yields smaller improvements due to insufficient training data.","PeriodicalId":50673,"journal":{"name":"Coastal Engineering Journal","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An artificial neural network based system for wave height prediction\",\"authors\":\"Elad Dakar, J. M. Fernández Jaramillo, I. Gertman, R. Mayerle, R. Goldman\",\"doi\":\"10.1080/21664250.2023.2190002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT We present a system for predicting the hourly significant wave height at a specific wave measurement station in the middle of Israel’s Mediterranean coast (Hadera). Our system uses an artificial neural network (ANN) composed of two sub-networks. We evaluate the importance of different inputs to the system. The input includes wind forecast data from the SKIRON atmospheric modeling system, wave forecast for the station’s location given by the SWAN wave model, and observed wave data. Our system pre-processes the wind data using a spatial filtering scheme and then enters it into the first sub-network in the form of a multidimensional tensor. We take special care to interconnect the tensor elements through a dimensional permutation that leads the ANN to sum elements along all the tensor’s dimensions. Our system groups the output of the first sub-network with the rest of the input and feeds it to the second sub-network that gives the prediction. Our ANN system outperforms the SWAN wave model in estimating wave heights over 1.5 meters. We obtain the best performance when either all input components are used or just wind and observations. Reimplementation of the system at Ashkelon yields smaller improvements due to insufficient training data.\",\"PeriodicalId\":50673,\"journal\":{\"name\":\"Coastal Engineering Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coastal Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21664250.2023.2190002\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21664250.2023.2190002","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个系统,用于预测以色列地中海沿岸中部(Hadera)的特定波浪测量站的每小时有效波高。本系统采用由两个子网络组成的人工神经网络(ANN)。我们评估不同输入对系统的重要性。输入的数据包括来自SKIRON大气模拟系统的风预报数据、SWAN波浪模式给出的台站位置的波浪预报数据以及观测到的波浪数据。我们的系统使用空间滤波方案对风数据进行预处理,然后将其以多维张量的形式输入到第一个子网络中。我们特别注意通过维度排列来连接张量元素,这使得人工神经网络沿着张量的所有维度求和元素。我们的系统将第一个子网络的输出与其余输入分组,并将其提供给给出预测的第二个子网络。我们的人工神经网络系统在估计1.5米以上的波浪高度方面优于SWAN波浪模型。我们在使用所有输入分量或仅使用风和观测时获得最佳性能。由于训练数据不足,在亚实基伦重新实施该系统的改进较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An artificial neural network based system for wave height prediction
ABSTRACT We present a system for predicting the hourly significant wave height at a specific wave measurement station in the middle of Israel’s Mediterranean coast (Hadera). Our system uses an artificial neural network (ANN) composed of two sub-networks. We evaluate the importance of different inputs to the system. The input includes wind forecast data from the SKIRON atmospheric modeling system, wave forecast for the station’s location given by the SWAN wave model, and observed wave data. Our system pre-processes the wind data using a spatial filtering scheme and then enters it into the first sub-network in the form of a multidimensional tensor. We take special care to interconnect the tensor elements through a dimensional permutation that leads the ANN to sum elements along all the tensor’s dimensions. Our system groups the output of the first sub-network with the rest of the input and feeds it to the second sub-network that gives the prediction. Our ANN system outperforms the SWAN wave model in estimating wave heights over 1.5 meters. We obtain the best performance when either all input components are used or just wind and observations. Reimplementation of the system at Ashkelon yields smaller improvements due to insufficient training data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Coastal Engineering Journal
Coastal Engineering Journal 工程技术-工程:大洋
CiteScore
4.60
自引率
8.30%
发文量
0
审稿时长
7.5 months
期刊介绍: Coastal Engineering Journal is a peer-reviewed medium for the publication of research achievements and engineering practices in the fields of coastal, harbor and offshore engineering. The CEJ editors welcome original papers and comprehensive reviews on waves and currents, sediment motion and morphodynamics, as well as on structures and facilities. Reports on conceptual developments and predictive methods of environmental processes are also published. Topics also include hard and soft technologies related to coastal zone development, shore protection, and prevention or mitigation of coastal disasters. The journal is intended to cover not only fundamental studies on analytical models, numerical computation and laboratory experiments, but also results of field measurements and case studies of real projects.
期刊最新文献
Analysis of climate change and climate variability impacts on coastal storms induced by extratropical cyclones: a case study of the August 2015 storm in central Chile Millennial and contemporary dynamics of the barrier estuary entrance at Moruya, SE Australia An automatic shoreline extraction method from SAR imagery using DeepLab-v3+ and its versatility Long-term erosion at the north of Hatiya Island in the Lower Meghna Estuary, Bangladesh Performance Evaluation of XBeach for Seawater-Aquifer Interaction Simulation in Swash Zone of Gravel Beach: An Attempt to Reduce the Phase Errors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1