Kun Wang, Philipp Heidingsfelder, Jun Gao, Liandong Yu, P. Ott
{"title":"非相干光结构照明显微镜的容错算法","authors":"Kun Wang, Philipp Heidingsfelder, Jun Gao, Liandong Yu, P. Ott","doi":"10.1080/15599612.2015.1034904","DOIUrl":null,"url":null,"abstract":"In this contribution we present a new algorithm for structured illumination microscopy with incoherent light. Existing algorithms for determining the contrast values of the focal depth response require a high accurate phase shift of the fringe pattern illumination. The presented algorithm, which is robust against inaccurate phase shift of the fringe pattern, reduces significantly the requirements for the phase shift and consequently the costs of the microscope. The new algorithm was tested by a preliminary experiment, whereby the grating was shifted by an elastic guided micro-motion mechanism employing a low-cost stepper motor replacing the conventional expensive piezo drive. The determined focal depth response is very smooth and corresponds very well to the theoretical focal depth response.","PeriodicalId":50296,"journal":{"name":"International Journal of Optomechatronics","volume":"9 1","pages":"170 - 186"},"PeriodicalIF":6.7000,"publicationDate":"2015-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15599612.2015.1034904","citationCount":"4","resultStr":"{\"title\":\"Fault Tolerant Algorithm for Structured Illumination Microscopy with Incoherent Light\",\"authors\":\"Kun Wang, Philipp Heidingsfelder, Jun Gao, Liandong Yu, P. Ott\",\"doi\":\"10.1080/15599612.2015.1034904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this contribution we present a new algorithm for structured illumination microscopy with incoherent light. Existing algorithms for determining the contrast values of the focal depth response require a high accurate phase shift of the fringe pattern illumination. The presented algorithm, which is robust against inaccurate phase shift of the fringe pattern, reduces significantly the requirements for the phase shift and consequently the costs of the microscope. The new algorithm was tested by a preliminary experiment, whereby the grating was shifted by an elastic guided micro-motion mechanism employing a low-cost stepper motor replacing the conventional expensive piezo drive. The determined focal depth response is very smooth and corresponds very well to the theoretical focal depth response.\",\"PeriodicalId\":50296,\"journal\":{\"name\":\"International Journal of Optomechatronics\",\"volume\":\"9 1\",\"pages\":\"170 - 186\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2015-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15599612.2015.1034904\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Optomechatronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15599612.2015.1034904\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optomechatronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15599612.2015.1034904","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Fault Tolerant Algorithm for Structured Illumination Microscopy with Incoherent Light
In this contribution we present a new algorithm for structured illumination microscopy with incoherent light. Existing algorithms for determining the contrast values of the focal depth response require a high accurate phase shift of the fringe pattern illumination. The presented algorithm, which is robust against inaccurate phase shift of the fringe pattern, reduces significantly the requirements for the phase shift and consequently the costs of the microscope. The new algorithm was tested by a preliminary experiment, whereby the grating was shifted by an elastic guided micro-motion mechanism employing a low-cost stepper motor replacing the conventional expensive piezo drive. The determined focal depth response is very smooth and corresponds very well to the theoretical focal depth response.
期刊介绍:
International Journal of Optomechatronics publishes the latest results of multidisciplinary research at the crossroads between optics, mechanics, fluidics and electronics.
Topics you can submit include, but are not limited to:
-Adaptive optics-
Optomechanics-
Machine vision, tracking and control-
Image-based micro-/nano- manipulation-
Control engineering for optomechatronics-
Optical metrology-
Optical sensors and light-based actuators-
Optomechatronics for astronomy and space applications-
Optical-based inspection and fault diagnosis-
Micro-/nano- optomechanical systems (MOEMS)-
Optofluidics-
Optical assembly and packaging-
Optical and vision-based manufacturing, processes, monitoring, and control-
Optomechatronics systems in bio- and medical technologies (such as optical coherence tomography (OCT) systems or endoscopes and optical based medical instruments)