S. Zimmermann, Alexander van Duellen, M. Wieghaus, S. A. Garnica Barragán, S. Fatikow
{"title":"融合光学成像和分类与扫描探针光刻的石墨烯无电阻加工","authors":"S. Zimmermann, Alexander van Duellen, M. Wieghaus, S. A. Garnica Barragán, S. Fatikow","doi":"10.1080/15599612.2016.1217107","DOIUrl":null,"url":null,"abstract":"ABSTRACT Resist based lithographical techniques are widely applied for graphene processing. These resists can leave residues leading to parasitic effects that deteriorate the desired properties of graphene. This paper presents an experimental setup tailored for resist-free robotic processing of graphene with in-situ vision based control. A robust graphene detection and classification approach is presented applying multiple image processing operations of the visual feedback provided by a high-resolution light microscope. Detected graphene flakes can be modified using scanning probe based lithographical processes, such as mechanical and bias-assisted approaches, that are directly linked to the in-situ optical images. The results of this process are discussed with respect to further application scenarios.","PeriodicalId":50296,"journal":{"name":"International Journal of Optomechatronics","volume":"10 1","pages":"109 - 97"},"PeriodicalIF":6.7000,"publicationDate":"2016-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15599612.2016.1217107","citationCount":"2","resultStr":"{\"title\":\"Resist-free processing of graphene merging optical imaging and classification with scanning probe lithography\",\"authors\":\"S. Zimmermann, Alexander van Duellen, M. Wieghaus, S. A. Garnica Barragán, S. Fatikow\",\"doi\":\"10.1080/15599612.2016.1217107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Resist based lithographical techniques are widely applied for graphene processing. These resists can leave residues leading to parasitic effects that deteriorate the desired properties of graphene. This paper presents an experimental setup tailored for resist-free robotic processing of graphene with in-situ vision based control. A robust graphene detection and classification approach is presented applying multiple image processing operations of the visual feedback provided by a high-resolution light microscope. Detected graphene flakes can be modified using scanning probe based lithographical processes, such as mechanical and bias-assisted approaches, that are directly linked to the in-situ optical images. The results of this process are discussed with respect to further application scenarios.\",\"PeriodicalId\":50296,\"journal\":{\"name\":\"International Journal of Optomechatronics\",\"volume\":\"10 1\",\"pages\":\"109 - 97\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2016-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15599612.2016.1217107\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Optomechatronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15599612.2016.1217107\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optomechatronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15599612.2016.1217107","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Resist-free processing of graphene merging optical imaging and classification with scanning probe lithography
ABSTRACT Resist based lithographical techniques are widely applied for graphene processing. These resists can leave residues leading to parasitic effects that deteriorate the desired properties of graphene. This paper presents an experimental setup tailored for resist-free robotic processing of graphene with in-situ vision based control. A robust graphene detection and classification approach is presented applying multiple image processing operations of the visual feedback provided by a high-resolution light microscope. Detected graphene flakes can be modified using scanning probe based lithographical processes, such as mechanical and bias-assisted approaches, that are directly linked to the in-situ optical images. The results of this process are discussed with respect to further application scenarios.
期刊介绍:
International Journal of Optomechatronics publishes the latest results of multidisciplinary research at the crossroads between optics, mechanics, fluidics and electronics.
Topics you can submit include, but are not limited to:
-Adaptive optics-
Optomechanics-
Machine vision, tracking and control-
Image-based micro-/nano- manipulation-
Control engineering for optomechatronics-
Optical metrology-
Optical sensors and light-based actuators-
Optomechatronics for astronomy and space applications-
Optical-based inspection and fault diagnosis-
Micro-/nano- optomechanical systems (MOEMS)-
Optofluidics-
Optical assembly and packaging-
Optical and vision-based manufacturing, processes, monitoring, and control-
Optomechatronics systems in bio- and medical technologies (such as optical coherence tomography (OCT) systems or endoscopes and optical based medical instruments)