阀盖抛光刀具去除函数建模及工艺参数优化

IF 6.7 3区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Optomechatronics Pub Date : 2016-08-19 DOI:10.1080/15599612.2016.1223236
Yunpeng Feng, Hengyu Wu, Haobo Cheng
{"title":"阀盖抛光刀具去除函数建模及工艺参数优化","authors":"Yunpeng Feng, Hengyu Wu, Haobo Cheng","doi":"10.1080/15599612.2016.1223236","DOIUrl":null,"url":null,"abstract":"ABSTRACT Since computer controlled optical surfacing (CCOS) processes were proposed in the 1960s, many processes were developed for precision optics successfully. In this present work, a novel approach, the precessions process, is proposed and used for large segments fabrication. The removal function of the bonnet polisher based on velocity and pressure distribution, which are obtained from the geometry of the process tool-motion and Hertzian contact theory respectively, are simulated. A finite element analysis (FEA) model is constructed to optimize process parameters. At last, detailed experimental studies are carried out to verify the optimal parameters.","PeriodicalId":50296,"journal":{"name":"International Journal of Optomechatronics","volume":"10 1","pages":"141 - 153"},"PeriodicalIF":6.7000,"publicationDate":"2016-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15599612.2016.1223236","citationCount":"12","resultStr":"{\"title\":\"Tool removal function modeling and processing parameters optimization for bonnet polishing\",\"authors\":\"Yunpeng Feng, Hengyu Wu, Haobo Cheng\",\"doi\":\"10.1080/15599612.2016.1223236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Since computer controlled optical surfacing (CCOS) processes were proposed in the 1960s, many processes were developed for precision optics successfully. In this present work, a novel approach, the precessions process, is proposed and used for large segments fabrication. The removal function of the bonnet polisher based on velocity and pressure distribution, which are obtained from the geometry of the process tool-motion and Hertzian contact theory respectively, are simulated. A finite element analysis (FEA) model is constructed to optimize process parameters. At last, detailed experimental studies are carried out to verify the optimal parameters.\",\"PeriodicalId\":50296,\"journal\":{\"name\":\"International Journal of Optomechatronics\",\"volume\":\"10 1\",\"pages\":\"141 - 153\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2016-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15599612.2016.1223236\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Optomechatronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15599612.2016.1223236\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optomechatronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15599612.2016.1223236","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 12

摘要

自20世纪60年代提出计算机控制的光学表面加工(CCOS)工艺以来,许多精密光学工艺被成功地开发出来。在目前的工作中,提出了一种新的方法,即进动过程,并将其用于大片段的制造。分别从加工工具运动几何和赫兹接触理论得到了速度分布和压力分布,并对阀盖抛光机的去除函数进行了仿真。建立了优化工艺参数的有限元分析模型。最后进行了详细的实验研究,验证了最优参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tool removal function modeling and processing parameters optimization for bonnet polishing
ABSTRACT Since computer controlled optical surfacing (CCOS) processes were proposed in the 1960s, many processes were developed for precision optics successfully. In this present work, a novel approach, the precessions process, is proposed and used for large segments fabrication. The removal function of the bonnet polisher based on velocity and pressure distribution, which are obtained from the geometry of the process tool-motion and Hertzian contact theory respectively, are simulated. A finite element analysis (FEA) model is constructed to optimize process parameters. At last, detailed experimental studies are carried out to verify the optimal parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Optomechatronics
International Journal of Optomechatronics 工程技术-工程:电子与电气
CiteScore
9.30
自引率
0.00%
发文量
3
审稿时长
3 months
期刊介绍: International Journal of Optomechatronics publishes the latest results of multidisciplinary research at the crossroads between optics, mechanics, fluidics and electronics. Topics you can submit include, but are not limited to: -Adaptive optics- Optomechanics- Machine vision, tracking and control- Image-based micro-/nano- manipulation- Control engineering for optomechatronics- Optical metrology- Optical sensors and light-based actuators- Optomechatronics for astronomy and space applications- Optical-based inspection and fault diagnosis- Micro-/nano- optomechanical systems (MOEMS)- Optofluidics- Optical assembly and packaging- Optical and vision-based manufacturing, processes, monitoring, and control- Optomechatronics systems in bio- and medical technologies (such as optical coherence tomography (OCT) systems or endoscopes and optical based medical instruments)
期刊最新文献
Laboratory demonstration of single-camera PPPP wavefront sensing using neural networks Control of a quasi-static MEMS Mirror for raster scanning projection applications Resonator-based near perfect metamaterial absorber with high EMI shielding for Wi-Fi and 5G applications Optofluidic sorting of microparticles using Airy beams Review of sensing and actuation technologies – from optical MEMS and nanophotonics to photonic nanosystems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1