Gregory R. Chambers, Dominic Dotterrer, Fedor Manin, S. Weinberger
{"title":"定量null-cobordism","authors":"Gregory R. Chambers, Dominic Dotterrer, Fedor Manin, S. Weinberger","doi":"10.1090/jams/903","DOIUrl":null,"url":null,"abstract":"<p>For a given null-cobordant Riemannian <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\n <mml:semantics>\n <mml:mi>n</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-manifold, how does the minimal geometric complexity of a null-cobordism depend on the geometric complexity of the manifold? Gromov has conjectured that this dependence should be linear. We show that it is at most a polynomial whose degree depends on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\">\n <mml:semantics>\n <mml:mi>n</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">n</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. In the appendix the bound is improved to one that is <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis upper L Superscript 1 plus epsilon Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>O</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mi>L</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>1</mml:mn>\n <mml:mo>+</mml:mo>\n <mml:mi>ε<!-- ε --></mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">O(L^{1+\\varepsilon })</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for every <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"epsilon greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>ε<!-- ε --></mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\varepsilon >0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>\n\n<p>This construction relies on another of independent interest. Take <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X\">\n <mml:semantics>\n <mml:mi>X</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">X</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Y\">\n <mml:semantics>\n <mml:mi>Y</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">Y</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> to be sufficiently nice compact metric spaces, such as Riemannian manifolds or simplicial complexes. Suppose <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Y\">\n <mml:semantics>\n <mml:mi>Y</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">Y</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is simply connected and rationally homotopy equivalent to a product of Eilenberg–MacLane spaces, for example, any simply connected Lie group. Then two homotopic <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\">\n <mml:semantics>\n <mml:mi>L</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">L</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-Lipschitz maps <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f comma g colon upper X right-arrow upper Y\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>f</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>g</mml:mi>\n <mml:mo>:</mml:mo>\n <mml:mi>X</mml:mi>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mi>Y</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">f,g:X \\to Y</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are homotopic via a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper C upper L\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>C</mml:mi>\n <mml:mi>L</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">CL</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-Lipschitz homotopy. We present a counterexample to show that this is not true for larger classes of spaces <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper Y\">\n <mml:semantics>\n <mml:mi>Y</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">Y</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"1 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2016-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/jams/903","citationCount":"21","resultStr":"{\"title\":\"Quantitative null-cobordism\",\"authors\":\"Gregory R. Chambers, Dominic Dotterrer, Fedor Manin, S. Weinberger\",\"doi\":\"10.1090/jams/903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a given null-cobordant Riemannian <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n\\\">\\n <mml:semantics>\\n <mml:mi>n</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">n</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-manifold, how does the minimal geometric complexity of a null-cobordism depend on the geometric complexity of the manifold? Gromov has conjectured that this dependence should be linear. We show that it is at most a polynomial whose degree depends on <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"n\\\">\\n <mml:semantics>\\n <mml:mi>n</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">n</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. In the appendix the bound is improved to one that is <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper O left-parenthesis upper L Superscript 1 plus epsilon Baseline right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>O</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msup>\\n <mml:mi>L</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>1</mml:mn>\\n <mml:mo>+</mml:mo>\\n <mml:mi>ε<!-- ε --></mml:mi>\\n </mml:mrow>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">O(L^{1+\\\\varepsilon })</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> for every <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"epsilon greater-than 0\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>ε<!-- ε --></mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:mn>0</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\varepsilon >0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>.</p>\\n\\n<p>This construction relies on another of independent interest. Take <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper X\\\">\\n <mml:semantics>\\n <mml:mi>X</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">X</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Y\\\">\\n <mml:semantics>\\n <mml:mi>Y</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">Y</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> to be sufficiently nice compact metric spaces, such as Riemannian manifolds or simplicial complexes. Suppose <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Y\\\">\\n <mml:semantics>\\n <mml:mi>Y</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">Y</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is simply connected and rationally homotopy equivalent to a product of Eilenberg–MacLane spaces, for example, any simply connected Lie group. Then two homotopic <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L\\\">\\n <mml:semantics>\\n <mml:mi>L</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">L</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-Lipschitz maps <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"f comma g colon upper X right-arrow upper Y\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>f</mml:mi>\\n <mml:mo>,</mml:mo>\\n <mml:mi>g</mml:mi>\\n <mml:mo>:</mml:mo>\\n <mml:mi>X</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">→<!-- → --></mml:mo>\\n <mml:mi>Y</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">f,g:X \\\\to Y</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> are homotopic via a <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper C upper L\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>C</mml:mi>\\n <mml:mi>L</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">CL</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-Lipschitz homotopy. We present a counterexample to show that this is not true for larger classes of spaces <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper Y\\\">\\n <mml:semantics>\\n <mml:mi>Y</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">Y</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>.</p>\",\"PeriodicalId\":54764,\"journal\":{\"name\":\"Journal of the American Mathematical Society\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2016-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1090/jams/903\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/jams/903\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/jams/903","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 21
摘要
对于给定的零协黎曼nn流形,零协的最小几何复杂度如何依赖于流形的几何复杂度?Gromov推测这种相关性应该是线性的。我们证明了它最多是一个多项式,它的次数依赖于n。在附录中,对每一个ε >0 \varepsilon >0,将界改进为O(L 1+ ε) O(L^{1+\varepsilon})。这个构造依赖于另一个独立的构造。假设X X和Y Y是足够好的紧化度量空间,比如黎曼流形或者简单复形。假设Y是单连通且理性同伦等价于Eilenberg-MacLane空间的乘积,例如,任意单连通李群。然后两个L L -Lipschitz映射f,g:X→Y f,g:X \到Y通过CL L L -Lipschitz同伦是同伦的。我们给出了一个反例来证明这对于更大的空间Y Y类是不成立的。
For a given null-cobordant Riemannian nn-manifold, how does the minimal geometric complexity of a null-cobordism depend on the geometric complexity of the manifold? Gromov has conjectured that this dependence should be linear. We show that it is at most a polynomial whose degree depends on nn. In the appendix the bound is improved to one that is O(L1+ε)O(L^{1+\varepsilon }) for every ε>0\varepsilon >0.
This construction relies on another of independent interest. Take XX and YY to be sufficiently nice compact metric spaces, such as Riemannian manifolds or simplicial complexes. Suppose YY is simply connected and rationally homotopy equivalent to a product of Eilenberg–MacLane spaces, for example, any simply connected Lie group. Then two homotopic LL-Lipschitz maps f,g:X→Yf,g:X \to Y are homotopic via a CLCL-Lipschitz homotopy. We present a counterexample to show that this is not true for larger classes of spaces YY.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.