{"title":"用8种不同的正常人上皮培养细胞比较20种癌症预防药物的组织特异性毒性。","authors":"E. Elmore, Thanh-Thuy Luc, V. Steele, J. Redpath","doi":"10.1089/109793301753407957","DOIUrl":null,"url":null,"abstract":"Comparative toxicity was determined for twenty potential chemopreventive agents in the Human Epithelial Cell Cytotoxicity (HECC) Assay using epithelial cell cultures from eight different tissues including: skin, kidney, breast, bronchus, cervix, prostate, oral cavity, and liver. The endpoints assessed were inhibition of: growth at 3 and 5 days; mitochondrial function; and proliferating cell nuclear antigen or albumin expression. Difluoromethylornithine (DFMO), s-allylcysteine, dehydroepiandrosterone (DHEA) analogue 8543, l-selenomethionine, and vitamin E acetate were not toxic or only produced mild toxicity with all endpoints in all eight cell types. N-acetyl-l-cysteine, calcium chloride, DHEA, genistein, ibuprofen, indole-3-carbinol, 4-hydroxyphenylretinamide (4-HPR), oltipraz, piroxicam, phenylethyl isothiocyanate, 9-cis-retinoic acid, and p-xylylselenocyanate each showed at least a 10-fold decrease in their TC(50) (toxic concentration that inhibited growth by 50%) for at least one endpoint with one or more cell types. For some agents such as DHEA and piroxicam, the TC(50)s for growth inhibition were 10-fold lower after 5 days compared with 3 days. Unique tissue-specific toxicity was observed for each toxic agent suggesting that tissue-specific effects are the rule rather than the exception. The HECC Assay is effective in identifying tissue-specific toxicity for chemopreventive agents and may help to identify potential toxicity problems in phase I human clinical trials.","PeriodicalId":80284,"journal":{"name":"In vitro & molecular toxicology","volume":"14 3 1","pages":"191-207"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/109793301753407957","citationCount":"13","resultStr":"{\"title\":\"Comparative tissue-specific toxicities of 20 cancer preventive agents using cultured cells from 8 different normal human epithelia.\",\"authors\":\"E. Elmore, Thanh-Thuy Luc, V. Steele, J. Redpath\",\"doi\":\"10.1089/109793301753407957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Comparative toxicity was determined for twenty potential chemopreventive agents in the Human Epithelial Cell Cytotoxicity (HECC) Assay using epithelial cell cultures from eight different tissues including: skin, kidney, breast, bronchus, cervix, prostate, oral cavity, and liver. The endpoints assessed were inhibition of: growth at 3 and 5 days; mitochondrial function; and proliferating cell nuclear antigen or albumin expression. Difluoromethylornithine (DFMO), s-allylcysteine, dehydroepiandrosterone (DHEA) analogue 8543, l-selenomethionine, and vitamin E acetate were not toxic or only produced mild toxicity with all endpoints in all eight cell types. N-acetyl-l-cysteine, calcium chloride, DHEA, genistein, ibuprofen, indole-3-carbinol, 4-hydroxyphenylretinamide (4-HPR), oltipraz, piroxicam, phenylethyl isothiocyanate, 9-cis-retinoic acid, and p-xylylselenocyanate each showed at least a 10-fold decrease in their TC(50) (toxic concentration that inhibited growth by 50%) for at least one endpoint with one or more cell types. For some agents such as DHEA and piroxicam, the TC(50)s for growth inhibition were 10-fold lower after 5 days compared with 3 days. Unique tissue-specific toxicity was observed for each toxic agent suggesting that tissue-specific effects are the rule rather than the exception. The HECC Assay is effective in identifying tissue-specific toxicity for chemopreventive agents and may help to identify potential toxicity problems in phase I human clinical trials.\",\"PeriodicalId\":80284,\"journal\":{\"name\":\"In vitro & molecular toxicology\",\"volume\":\"14 3 1\",\"pages\":\"191-207\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1089/109793301753407957\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In vitro & molecular toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/109793301753407957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In vitro & molecular toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/109793301753407957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparative tissue-specific toxicities of 20 cancer preventive agents using cultured cells from 8 different normal human epithelia.
Comparative toxicity was determined for twenty potential chemopreventive agents in the Human Epithelial Cell Cytotoxicity (HECC) Assay using epithelial cell cultures from eight different tissues including: skin, kidney, breast, bronchus, cervix, prostate, oral cavity, and liver. The endpoints assessed were inhibition of: growth at 3 and 5 days; mitochondrial function; and proliferating cell nuclear antigen or albumin expression. Difluoromethylornithine (DFMO), s-allylcysteine, dehydroepiandrosterone (DHEA) analogue 8543, l-selenomethionine, and vitamin E acetate were not toxic or only produced mild toxicity with all endpoints in all eight cell types. N-acetyl-l-cysteine, calcium chloride, DHEA, genistein, ibuprofen, indole-3-carbinol, 4-hydroxyphenylretinamide (4-HPR), oltipraz, piroxicam, phenylethyl isothiocyanate, 9-cis-retinoic acid, and p-xylylselenocyanate each showed at least a 10-fold decrease in their TC(50) (toxic concentration that inhibited growth by 50%) for at least one endpoint with one or more cell types. For some agents such as DHEA and piroxicam, the TC(50)s for growth inhibition were 10-fold lower after 5 days compared with 3 days. Unique tissue-specific toxicity was observed for each toxic agent suggesting that tissue-specific effects are the rule rather than the exception. The HECC Assay is effective in identifying tissue-specific toxicity for chemopreventive agents and may help to identify potential toxicity problems in phase I human clinical trials.