{"title":"膜蒸馏装置与太阳能直接接触膜耦合的实验验证","authors":"K. Zarzoum, M. Alquraish, K. Zhani, H. B. Bacha","doi":"10.1093/ijlct/ctad011","DOIUrl":null,"url":null,"abstract":"This paper presents an experimental validation of membrane distillation unit using solar energy which is coupled with direct contact membrane, which is placed at Kairouan University, Tunisia (35 N, 10 E) and tested on several sunny days. This unit is located as part of a cooperation project research and development between German Institute for Solar Energy Systems and Tunisian Electromechanical Systems Laboratory named: Solar driven membrane distillation for resource efficient desalination in remote areas. A theoretical model investigation as well as experimental is carried out. A mathematical model based on heat and mass transfers of the membrane distillation unit has been presented in this paper. The obtained global model of the membrane distillation unit has been converted to a set of algebraic system of equations to render them ordinary. To compare the experimental and numerical data of the mathematical model of the membrane distillation unit an example of the validation process that has been presented to assess the credibility of the obtained numerical model of membrane distillation unit, a laptop simulation program based on the global model of the unit is simulated by C++ software to solve the model of solar irradiation and all temperature on the journal productivity of the membrane distillation unit. It was shown by this study that the global mathematical model of the unit is able to predict accurately the trends of the thermal characteristic of the membrane distillation unit.","PeriodicalId":14118,"journal":{"name":"International Journal of Low-carbon Technologies","volume":"1 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental validation of membrane distillation unit coupled with direct contact membrane using solar energy\",\"authors\":\"K. Zarzoum, M. Alquraish, K. Zhani, H. B. Bacha\",\"doi\":\"10.1093/ijlct/ctad011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an experimental validation of membrane distillation unit using solar energy which is coupled with direct contact membrane, which is placed at Kairouan University, Tunisia (35 N, 10 E) and tested on several sunny days. This unit is located as part of a cooperation project research and development between German Institute for Solar Energy Systems and Tunisian Electromechanical Systems Laboratory named: Solar driven membrane distillation for resource efficient desalination in remote areas. A theoretical model investigation as well as experimental is carried out. A mathematical model based on heat and mass transfers of the membrane distillation unit has been presented in this paper. The obtained global model of the membrane distillation unit has been converted to a set of algebraic system of equations to render them ordinary. To compare the experimental and numerical data of the mathematical model of the membrane distillation unit an example of the validation process that has been presented to assess the credibility of the obtained numerical model of membrane distillation unit, a laptop simulation program based on the global model of the unit is simulated by C++ software to solve the model of solar irradiation and all temperature on the journal productivity of the membrane distillation unit. It was shown by this study that the global mathematical model of the unit is able to predict accurately the trends of the thermal characteristic of the membrane distillation unit.\",\"PeriodicalId\":14118,\"journal\":{\"name\":\"International Journal of Low-carbon Technologies\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Low-carbon Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/ijlct/ctad011\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Low-carbon Technologies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/ijlct/ctad011","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Experimental validation of membrane distillation unit coupled with direct contact membrane using solar energy
This paper presents an experimental validation of membrane distillation unit using solar energy which is coupled with direct contact membrane, which is placed at Kairouan University, Tunisia (35 N, 10 E) and tested on several sunny days. This unit is located as part of a cooperation project research and development between German Institute for Solar Energy Systems and Tunisian Electromechanical Systems Laboratory named: Solar driven membrane distillation for resource efficient desalination in remote areas. A theoretical model investigation as well as experimental is carried out. A mathematical model based on heat and mass transfers of the membrane distillation unit has been presented in this paper. The obtained global model of the membrane distillation unit has been converted to a set of algebraic system of equations to render them ordinary. To compare the experimental and numerical data of the mathematical model of the membrane distillation unit an example of the validation process that has been presented to assess the credibility of the obtained numerical model of membrane distillation unit, a laptop simulation program based on the global model of the unit is simulated by C++ software to solve the model of solar irradiation and all temperature on the journal productivity of the membrane distillation unit. It was shown by this study that the global mathematical model of the unit is able to predict accurately the trends of the thermal characteristic of the membrane distillation unit.
期刊介绍:
The International Journal of Low-Carbon Technologies is a quarterly publication concerned with the challenge of climate change and its effects on the built environment and sustainability. The Journal publishes original, quality research papers on issues of climate change, sustainable development and the built environment related to architecture, building services engineering, civil engineering, building engineering, urban design and other disciplines. It features in-depth articles, technical notes, review papers, book reviews and special issues devoted to international conferences. The journal encourages submissions related to interdisciplinary research in the built environment. The journal is available in paper and electronic formats. All articles are peer-reviewed by leading experts in the field.