U. Bhatt, Shubhangani Sharma, Deepak Kumar, V. Soni
{"title":"路灯对城市苔藓植物生理生化及多样性的影响——以半叶藓为例","authors":"U. Bhatt, Shubhangani Sharma, Deepak Kumar, V. Soni","doi":"10.1093/jue/juac019","DOIUrl":null,"url":null,"abstract":"The use of artificial light at night is a very basic symbol of urbanization and has distorted many ecological, biochemical and physiological phenomena in plants, which have settled for millions of years in the biological system. Continuous illumination of light significantly alters the circadian rhythm of all organisms. The present study was focused to understand the effects of continuous light (CL) on the biochemistry and physiology of moss Semibarbula orientalis. It was observed that H2O2 accumulation and activities of chlorophyllase, phenylalanine ammonia-lyase, superoxide dismutase and catalase enzymes significantly enhanced in plants growing under streetlights. Similarly, plants under CL showed a marked reduction in photosynthetic performance. Specific fluxes (ABS/RC, TR/RC, ET/RC), phenomenological fluxes (ABS/CS, TR/CS, ET/CS), density of photosystem-II, quantum yield of photosynthesis and chlorophyll concentration markedly declined in plants growing under streetlights. Depletion in performance indices (PIcs and PIabs) and primary and secondary photochemistry [PHIO/(1 − PHIO) and PSIO/(1 − PSIO)] were also noticed, which indicated failure of adaptive strategies of photosystem-II, resulting in the loss of biomass of S. orientalis. Biomass decline is also shown by a decrease in coverage, which reduces the bryophyte species richness of the chosen locations. Present studies clearly indicate that artificial light at night drastically affects the moss population. The reduction in the dominating species, S. orientalis, improves species evenness and results in a slow growth rate.","PeriodicalId":37022,"journal":{"name":"Journal of Urban Ecology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of streetlights on physiology, biochemistry and diversity of urban bryophyte: a case study on moss Semibarbula orientalis\",\"authors\":\"U. Bhatt, Shubhangani Sharma, Deepak Kumar, V. Soni\",\"doi\":\"10.1093/jue/juac019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of artificial light at night is a very basic symbol of urbanization and has distorted many ecological, biochemical and physiological phenomena in plants, which have settled for millions of years in the biological system. Continuous illumination of light significantly alters the circadian rhythm of all organisms. The present study was focused to understand the effects of continuous light (CL) on the biochemistry and physiology of moss Semibarbula orientalis. It was observed that H2O2 accumulation and activities of chlorophyllase, phenylalanine ammonia-lyase, superoxide dismutase and catalase enzymes significantly enhanced in plants growing under streetlights. Similarly, plants under CL showed a marked reduction in photosynthetic performance. Specific fluxes (ABS/RC, TR/RC, ET/RC), phenomenological fluxes (ABS/CS, TR/CS, ET/CS), density of photosystem-II, quantum yield of photosynthesis and chlorophyll concentration markedly declined in plants growing under streetlights. Depletion in performance indices (PIcs and PIabs) and primary and secondary photochemistry [PHIO/(1 − PHIO) and PSIO/(1 − PSIO)] were also noticed, which indicated failure of adaptive strategies of photosystem-II, resulting in the loss of biomass of S. orientalis. Biomass decline is also shown by a decrease in coverage, which reduces the bryophyte species richness of the chosen locations. Present studies clearly indicate that artificial light at night drastically affects the moss population. The reduction in the dominating species, S. orientalis, improves species evenness and results in a slow growth rate.\",\"PeriodicalId\":37022,\"journal\":{\"name\":\"Journal of Urban Ecology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Urban Ecology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jue/juac019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Urban Ecology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jue/juac019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
Impact of streetlights on physiology, biochemistry and diversity of urban bryophyte: a case study on moss Semibarbula orientalis
The use of artificial light at night is a very basic symbol of urbanization and has distorted many ecological, biochemical and physiological phenomena in plants, which have settled for millions of years in the biological system. Continuous illumination of light significantly alters the circadian rhythm of all organisms. The present study was focused to understand the effects of continuous light (CL) on the biochemistry and physiology of moss Semibarbula orientalis. It was observed that H2O2 accumulation and activities of chlorophyllase, phenylalanine ammonia-lyase, superoxide dismutase and catalase enzymes significantly enhanced in plants growing under streetlights. Similarly, plants under CL showed a marked reduction in photosynthetic performance. Specific fluxes (ABS/RC, TR/RC, ET/RC), phenomenological fluxes (ABS/CS, TR/CS, ET/CS), density of photosystem-II, quantum yield of photosynthesis and chlorophyll concentration markedly declined in plants growing under streetlights. Depletion in performance indices (PIcs and PIabs) and primary and secondary photochemistry [PHIO/(1 − PHIO) and PSIO/(1 − PSIO)] were also noticed, which indicated failure of adaptive strategies of photosystem-II, resulting in the loss of biomass of S. orientalis. Biomass decline is also shown by a decrease in coverage, which reduces the bryophyte species richness of the chosen locations. Present studies clearly indicate that artificial light at night drastically affects the moss population. The reduction in the dominating species, S. orientalis, improves species evenness and results in a slow growth rate.