气候模式代码谱系及其与气候反馈和敏感性的关系

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Advances in Modeling Earth Systems Pub Date : 2023-07-12 DOI:10.1029/2022MS003588
Peter Kuma, Frida A.-M. Bender, Aiden R. J?nsson
{"title":"气候模式代码谱系及其与气候反馈和敏感性的关系","authors":"Peter Kuma,&nbsp;Frida A.-M. Bender,&nbsp;Aiden R. J?nsson","doi":"10.1029/2022MS003588","DOIUrl":null,"url":null,"abstract":"<p>Contemporary general circulation models (GCMs) and Earth system models (ESMs) are developed by a large number of modeling groups globally. They use a wide range of representations of physical processes, allowing for structural (code) uncertainty to be partially quantified with multi-model ensembles (MMEs). Many models in the MMEs of the Coupled Model Intercomparison Project (CMIP) have a common development history due to sharing of code and schemes. This makes their projections statistically dependent and introduces biases in MME statistics. Previous research has focused on model output and code dependence, and model code genealogy of CMIP models has not been fully analyzed. We present a full reconstruction of CMIP3, CMIP5, and CMIP6 code genealogy of 167 atmospheric models, GCMs, and ESMs (of which 114 participated in CMIP) based on the available literature, with a focus on the atmospheric component and atmospheric physics. We identify 12 main model families. We propose family and ancestry weighting methods designed to reduce the effect of model structural dependence in MMEs. We analyze weighted effective climate sensitivity (ECS), climate feedbacks, forcing, and global mean near-surface air temperature, and how they differ by model family. Models in the same family often have similar climate properties. We show that weighting can partially reconcile differences in ECS and cloud feedbacks between CMIP5 and CMIP6. The results can help in understanding structural dependence between CMIP models, and the proposed ancestry and family weighting methods can be used in MME assessments to ameliorate model structural sampling biases.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"15 7","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2022MS003588","citationCount":"3","resultStr":"{\"title\":\"Climate Model Code Genealogy and Its Relation to Climate Feedbacks and Sensitivity\",\"authors\":\"Peter Kuma,&nbsp;Frida A.-M. Bender,&nbsp;Aiden R. J?nsson\",\"doi\":\"10.1029/2022MS003588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Contemporary general circulation models (GCMs) and Earth system models (ESMs) are developed by a large number of modeling groups globally. They use a wide range of representations of physical processes, allowing for structural (code) uncertainty to be partially quantified with multi-model ensembles (MMEs). Many models in the MMEs of the Coupled Model Intercomparison Project (CMIP) have a common development history due to sharing of code and schemes. This makes their projections statistically dependent and introduces biases in MME statistics. Previous research has focused on model output and code dependence, and model code genealogy of CMIP models has not been fully analyzed. We present a full reconstruction of CMIP3, CMIP5, and CMIP6 code genealogy of 167 atmospheric models, GCMs, and ESMs (of which 114 participated in CMIP) based on the available literature, with a focus on the atmospheric component and atmospheric physics. We identify 12 main model families. We propose family and ancestry weighting methods designed to reduce the effect of model structural dependence in MMEs. We analyze weighted effective climate sensitivity (ECS), climate feedbacks, forcing, and global mean near-surface air temperature, and how they differ by model family. Models in the same family often have similar climate properties. We show that weighting can partially reconcile differences in ECS and cloud feedbacks between CMIP5 and CMIP6. The results can help in understanding structural dependence between CMIP models, and the proposed ancestry and family weighting methods can be used in MME assessments to ameliorate model structural sampling biases.</p>\",\"PeriodicalId\":14881,\"journal\":{\"name\":\"Journal of Advances in Modeling Earth Systems\",\"volume\":\"15 7\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2022MS003588\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Modeling Earth Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2022MS003588\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2022MS003588","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 3

摘要

当代大气环流模式(GCMs)和地球系统模式(ESMs)是由全球大量的模式组开发的。它们使用广泛的物理过程表示,允许用多模型集成(MMEs)部分量化结构(代码)不确定性。耦合模型比对项目(CMIP)中的许多模型由于代码和方案的共享而具有共同的开发历史。这使得他们的预测在统计上依赖,并在MME统计中引入偏差。以往的研究主要集中在模型输出和代码依赖上,对CMIP模型的模型代码谱系分析不够全面。本文基于现有文献,对167个大气模式、gcm和esm(其中114个参与了CMIP)的CMIP3、CMIP5和CMIP6代码谱进行了全面重建,重点研究了大气成分和大气物理。我们确定了12个主要的模范家庭。我们提出了家族和祖先加权方法,旨在减少MMEs模式结构依赖性的影响,并分析了加权有效气候敏感性(ECS)、气候反馈、强迫和全球平均近地表气温,以及它们在不同模式家族中的差异。同一家族的模型通常具有相似的气候特性。我们发现,加权可以部分地调和CMIP5和CMIP6之间ECS和云反馈的差异。研究结果有助于理解CMIP模型之间的结构依赖关系,提出的祖先和家族加权方法可用于MME评估,以改善模型结构抽样偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Climate Model Code Genealogy and Its Relation to Climate Feedbacks and Sensitivity

Contemporary general circulation models (GCMs) and Earth system models (ESMs) are developed by a large number of modeling groups globally. They use a wide range of representations of physical processes, allowing for structural (code) uncertainty to be partially quantified with multi-model ensembles (MMEs). Many models in the MMEs of the Coupled Model Intercomparison Project (CMIP) have a common development history due to sharing of code and schemes. This makes their projections statistically dependent and introduces biases in MME statistics. Previous research has focused on model output and code dependence, and model code genealogy of CMIP models has not been fully analyzed. We present a full reconstruction of CMIP3, CMIP5, and CMIP6 code genealogy of 167 atmospheric models, GCMs, and ESMs (of which 114 participated in CMIP) based on the available literature, with a focus on the atmospheric component and atmospheric physics. We identify 12 main model families. We propose family and ancestry weighting methods designed to reduce the effect of model structural dependence in MMEs. We analyze weighted effective climate sensitivity (ECS), climate feedbacks, forcing, and global mean near-surface air temperature, and how they differ by model family. Models in the same family often have similar climate properties. We show that weighting can partially reconcile differences in ECS and cloud feedbacks between CMIP5 and CMIP6. The results can help in understanding structural dependence between CMIP models, and the proposed ancestry and family weighting methods can be used in MME assessments to ameliorate model structural sampling biases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
期刊最新文献
Standardized Daily High-Resolution Large-Eddy Simulations of the Arctic Boundary Layer and Clouds During the Complete MOSAiC Drift A Simple Model for the Emergence of Relaxation-Oscillator Convection Online Learning of Entrainment Closures in a Hybrid Machine Learning Parameterization A Refined Zero-Buoyancy Plume Model for Large-Scale Atmospheric Profiles and Anvil Clouds in Radiative-Convective Equilibrium Quantitative Decoupling Analysis for Assessing the Meteorological, Emission, and Chemical Influences on Fine Particle Pollution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1