{"title":"视觉工作记忆负荷依赖性衰退的神经关联","authors":"Yaju Li, Y. Noguchi","doi":"10.1093/texcom/tgac015","DOIUrl":null,"url":null,"abstract":"Abstract Previous studies have shown that a rate of temporal decline in visual working memory (vWM) highly depends on a number of memory items. When people retain the information of many (≥ 4) stimuli simultaneously, their memory representations are fragile and rapidly degrade within 2–3 s after an offset (called the “competition” among memory items). When a memory load is low (1 or 2 items), in contrast, the fidelity of vWM is preserved for a longer time because focused attention to the small number of items prevents the temporal degradation. In the present study, we explored neural correlates of this load-dependent decline of vWM in the human brain. Using electroencephalography and a classical change-detection task, we recorded neural measures of vWM that have been reported previously, such as the contralateral delay activity (CDA) and a suppression of alpha power (8–12 Hz). Results indicated that the load-dependent decline of vWM was more clearly reflected in the change in power and speed of alpha/beta rhythm than CDA, suggesting a close relationship of those signals to an attention-based preservation of WM fidelity.","PeriodicalId":72551,"journal":{"name":"Cerebral cortex communications","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Neural correlates of a load-dependent decline in visual working memory\",\"authors\":\"Yaju Li, Y. Noguchi\",\"doi\":\"10.1093/texcom/tgac015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Previous studies have shown that a rate of temporal decline in visual working memory (vWM) highly depends on a number of memory items. When people retain the information of many (≥ 4) stimuli simultaneously, their memory representations are fragile and rapidly degrade within 2–3 s after an offset (called the “competition” among memory items). When a memory load is low (1 or 2 items), in contrast, the fidelity of vWM is preserved for a longer time because focused attention to the small number of items prevents the temporal degradation. In the present study, we explored neural correlates of this load-dependent decline of vWM in the human brain. Using electroencephalography and a classical change-detection task, we recorded neural measures of vWM that have been reported previously, such as the contralateral delay activity (CDA) and a suppression of alpha power (8–12 Hz). Results indicated that the load-dependent decline of vWM was more clearly reflected in the change in power and speed of alpha/beta rhythm than CDA, suggesting a close relationship of those signals to an attention-based preservation of WM fidelity.\",\"PeriodicalId\":72551,\"journal\":{\"name\":\"Cerebral cortex communications\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cerebral cortex communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/texcom/tgac015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/texcom/tgac015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neural correlates of a load-dependent decline in visual working memory
Abstract Previous studies have shown that a rate of temporal decline in visual working memory (vWM) highly depends on a number of memory items. When people retain the information of many (≥ 4) stimuli simultaneously, their memory representations are fragile and rapidly degrade within 2–3 s after an offset (called the “competition” among memory items). When a memory load is low (1 or 2 items), in contrast, the fidelity of vWM is preserved for a longer time because focused attention to the small number of items prevents the temporal degradation. In the present study, we explored neural correlates of this load-dependent decline of vWM in the human brain. Using electroencephalography and a classical change-detection task, we recorded neural measures of vWM that have been reported previously, such as the contralateral delay activity (CDA) and a suppression of alpha power (8–12 Hz). Results indicated that the load-dependent decline of vWM was more clearly reflected in the change in power and speed of alpha/beta rhythm than CDA, suggesting a close relationship of those signals to an attention-based preservation of WM fidelity.