羊膜在内脏器官重建手术中的应用——系统综述和荟萃分析

IF 3.1 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Tissue Engineering and Regenerative Medicine Pub Date : 2022-11-04 DOI:10.1002/term.3357
Lennart P. Maljaars, Sohayla Bendaoud, Arnoud W. Kastelein, Zeliha Guler, Carlijn R. Hooijmans, Jan-Paul W. R. Roovers
{"title":"羊膜在内脏器官重建手术中的应用——系统综述和荟萃分析","authors":"Lennart P. Maljaars,&nbsp;Sohayla Bendaoud,&nbsp;Arnoud W. Kastelein,&nbsp;Zeliha Guler,&nbsp;Carlijn R. Hooijmans,&nbsp;Jan-Paul W. R. Roovers","doi":"10.1002/term.3357","DOIUrl":null,"url":null,"abstract":"<p>Amniotic membrane (AM) has great potential as a scaffold for tissue regeneration in reconstructive surgery. To date, no systematic review of the literature has been performed for the applications of AM in wound closure of internal organs. Therefore, in this systematic review and meta-analysis, we summarize the literature on the safety and efficacy of AM for the closure of internal organs. A systematic search was performed in MEDLINE-PubMed database and OVID Embase to retrieve human and controlled animal studies on wound closure of internal organs. The Cochrane Risk of Bias tool for randomized clinical trials and the SYRCLE risk of bias tool for animal studies were used. Meta-analyses (MAs) were conducted for controlled animal studies to assess efficacy of closure, mortality and complications in subjects who underwent surgical wound closure in internal organs with the application of AM. Sixty references containing 26 human experiments and 36 animal experiments were included. The MAs of the controlled animal studies showed comparable results with regard to closure, mortality and complications, and suggested improved mechanical strength and lower inflammation scores after AM application when compared to standard surgical closure techniques. This systematic review and MAs demonstrate that the application of AM to promote wound healing of internal organs appears to be safe, efficacious, and feasible.</p>","PeriodicalId":202,"journal":{"name":"Journal of Tissue Engineering and Regenerative Medicine","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/term.3357","citationCount":"3","resultStr":"{\"title\":\"Application of amniotic membranes in reconstructive surgery of internal organs—A systematic review and meta-analysis\",\"authors\":\"Lennart P. Maljaars,&nbsp;Sohayla Bendaoud,&nbsp;Arnoud W. Kastelein,&nbsp;Zeliha Guler,&nbsp;Carlijn R. Hooijmans,&nbsp;Jan-Paul W. R. Roovers\",\"doi\":\"10.1002/term.3357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Amniotic membrane (AM) has great potential as a scaffold for tissue regeneration in reconstructive surgery. To date, no systematic review of the literature has been performed for the applications of AM in wound closure of internal organs. Therefore, in this systematic review and meta-analysis, we summarize the literature on the safety and efficacy of AM for the closure of internal organs. A systematic search was performed in MEDLINE-PubMed database and OVID Embase to retrieve human and controlled animal studies on wound closure of internal organs. The Cochrane Risk of Bias tool for randomized clinical trials and the SYRCLE risk of bias tool for animal studies were used. Meta-analyses (MAs) were conducted for controlled animal studies to assess efficacy of closure, mortality and complications in subjects who underwent surgical wound closure in internal organs with the application of AM. Sixty references containing 26 human experiments and 36 animal experiments were included. The MAs of the controlled animal studies showed comparable results with regard to closure, mortality and complications, and suggested improved mechanical strength and lower inflammation scores after AM application when compared to standard surgical closure techniques. This systematic review and MAs demonstrate that the application of AM to promote wound healing of internal organs appears to be safe, efficacious, and feasible.</p>\",\"PeriodicalId\":202,\"journal\":{\"name\":\"Journal of Tissue Engineering and Regenerative Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/term.3357\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Tissue Engineering and Regenerative Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/term.3357\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering and Regenerative Medicine","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/term.3357","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

羊膜在重建外科中作为组织再生的支架具有很大的潜力。到目前为止,还没有对AM在内脏器官伤口闭合中的应用进行系统的文献综述。因此,在这篇系统综述和荟萃分析中,我们总结了关于AM治疗内脏关闭的安全性和有效性的文献。在MEDLINE-PubMed数据库和OVID Embase中进行系统检索,检索关于内脏器官伤口闭合的人类和对照动物研究。随机临床试验使用Cochrane偏倚风险工具,动物研究使用sycle偏倚风险工具。我们对对照动物研究进行了meta分析(MAs),以评估应用AM缝合内脏器官手术伤口的疗效、死亡率和并发症。文献60篇,包含26个人体实验和36个动物实验。对照动物研究的MAs在闭合、死亡率和并发症方面显示出类似的结果,并表明与标准手术闭合技术相比,应用AM后机械强度提高,炎症评分降低。本系统综述和MAs表明,应用AM促进内脏器官伤口愈合是安全、有效和可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of amniotic membranes in reconstructive surgery of internal organs—A systematic review and meta-analysis

Amniotic membrane (AM) has great potential as a scaffold for tissue regeneration in reconstructive surgery. To date, no systematic review of the literature has been performed for the applications of AM in wound closure of internal organs. Therefore, in this systematic review and meta-analysis, we summarize the literature on the safety and efficacy of AM for the closure of internal organs. A systematic search was performed in MEDLINE-PubMed database and OVID Embase to retrieve human and controlled animal studies on wound closure of internal organs. The Cochrane Risk of Bias tool for randomized clinical trials and the SYRCLE risk of bias tool for animal studies were used. Meta-analyses (MAs) were conducted for controlled animal studies to assess efficacy of closure, mortality and complications in subjects who underwent surgical wound closure in internal organs with the application of AM. Sixty references containing 26 human experiments and 36 animal experiments were included. The MAs of the controlled animal studies showed comparable results with regard to closure, mortality and complications, and suggested improved mechanical strength and lower inflammation scores after AM application when compared to standard surgical closure techniques. This systematic review and MAs demonstrate that the application of AM to promote wound healing of internal organs appears to be safe, efficacious, and feasible.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
3.00%
发文量
97
审稿时长
4-8 weeks
期刊介绍: Journal of Tissue Engineering and Regenerative Medicine publishes rapidly and rigorously peer-reviewed research papers, reviews, clinical case reports, perspectives, and short communications on topics relevant to the development of therapeutic approaches which combine stem or progenitor cells, biomaterials and scaffolds, growth factors and other bioactive agents, and their respective constructs. All papers should deal with research that has a direct or potential impact on the development of novel clinical approaches for the regeneration or repair of tissues and organs. The journal is multidisciplinary, covering the combination of the principles of life sciences and engineering in efforts to advance medicine and clinical strategies. The journal focuses on the use of cells, materials, and biochemical/mechanical factors in the development of biological functional substitutes that restore, maintain, or improve tissue or organ function. The journal publishes research on any tissue or organ and covers all key aspects of the field, including the development of new biomaterials and processing of scaffolds; the use of different types of cells (mainly stem and progenitor cells) and their culture in specific bioreactors; studies in relevant animal models; and clinical trials in human patients performed under strict regulatory and ethical frameworks. Manuscripts describing the use of advanced methods for the characterization of engineered tissues are also of special interest to the journal readership.
期刊最新文献
Challenges and Advances in Peripheral Nerve Tissue Engineering Critical Factors Affecting Nerve Regeneration Polycaprolactone Fiber and Laminin and Collagen IV Protein Incorporation in Implants Enhances Wound Healing in a Novel Mouse Skin Splint Model Herpesvirus-Entry Mediator Inhibits the NF-κB Pathway Activated by IL-17 and Fosters the Osteogenic Differentiation of Allogeneic Mesenchymal Stem Cells Decellularisation and Characterisation of Porcine Pleura as Bioscaffolds in Tissue Engineering Harnessing the Regenerative Potential of Fetal Mesenchymal Stem Cells and Endothelial Colony-Forming Cells in the Biofabrication of Tissue-Engineered Vascular Grafts (TEVGs)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1