一种用于预测药代动力学应用的新型连续再循环微流体肝组织芯片。

IF 5 3区 医学 Q1 PHARMACOLOGY & PHARMACY AAPS Journal Pub Date : 2023-10-27 DOI:10.1208/s12248-023-00870-x
Shiny Amala Priya Rajan, Jason Sherfey, Shivam Ohri, Lauren Nichols, J Tyler Smith, Paarth Parekh, Eugene P Kadar, Frances Clark, Billy T George, Lauren Gregory, David Tess, James R Gosset, Jennifer Liras, Emily Geishecker, R Scott Obach, Murat Cirit
{"title":"一种用于预测药代动力学应用的新型连续再循环微流体肝组织芯片。","authors":"Shiny Amala Priya Rajan, Jason Sherfey, Shivam Ohri, Lauren Nichols, J Tyler Smith, Paarth Parekh, Eugene P Kadar, Frances Clark, Billy T George, Lauren Gregory, David Tess, James R Gosset, Jennifer Liras, Emily Geishecker, R Scott Obach, Murat Cirit","doi":"10.1208/s12248-023-00870-x","DOIUrl":null,"url":null,"abstract":"<p><p>A crucial step in lead selection during drug development is accurate estimation and optimization of hepatic clearance using in vitro methods. However, current methods are limited by factors such as lack of physiological relevance, short culture/incubation times that are not consistent with drug exposure patterns in patients, use of drug absorbing materials, and evaporation during long-term incubation. To address these technological needs, we developed a novel milli-fluidic human liver tissue chip (LTC) that was designed with continuous media recirculation and optimized for hepatic cultures using human primary hepatocytes. Here, we characterized the LTC using a series of physiologically relevant metrics and test compounds to demonstrate that we could accurately predict the PK of both low- and high-clearance compounds. The non-biological characterization indicated that the cyclic olefin copolymer (COC)-based LTC exhibited negligible evaporation and minimal non-specific binding of drugs of varying ionic states and lipophilicity. Biologically, the LTC exhibited functional and polarized hepatic culture with sustained metabolic CYP activity for at least 15 days. This long-term culture was then used for drug clearance studies for low- and high-clearance compounds for at least 12 days, and clearance was estimated for a range of compounds with high in vitro-in vivo correlation (IVIVC). We also demonstrated that LTC can be induced by rifampicin, and the culture age had insignificant effect on depletion kinetic and predicted clearance value. Thus, we used advances in bioengineering to develop a novel purpose-built platform with high reproducibility and minimal variability to address unmet needs for PK applications.</p>","PeriodicalId":50934,"journal":{"name":"AAPS Journal","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Milli-fluidic Liver Tissue Chip with Continuous Recirculation for Predictive Pharmacokinetics Applications.\",\"authors\":\"Shiny Amala Priya Rajan, Jason Sherfey, Shivam Ohri, Lauren Nichols, J Tyler Smith, Paarth Parekh, Eugene P Kadar, Frances Clark, Billy T George, Lauren Gregory, David Tess, James R Gosset, Jennifer Liras, Emily Geishecker, R Scott Obach, Murat Cirit\",\"doi\":\"10.1208/s12248-023-00870-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A crucial step in lead selection during drug development is accurate estimation and optimization of hepatic clearance using in vitro methods. However, current methods are limited by factors such as lack of physiological relevance, short culture/incubation times that are not consistent with drug exposure patterns in patients, use of drug absorbing materials, and evaporation during long-term incubation. To address these technological needs, we developed a novel milli-fluidic human liver tissue chip (LTC) that was designed with continuous media recirculation and optimized for hepatic cultures using human primary hepatocytes. Here, we characterized the LTC using a series of physiologically relevant metrics and test compounds to demonstrate that we could accurately predict the PK of both low- and high-clearance compounds. The non-biological characterization indicated that the cyclic olefin copolymer (COC)-based LTC exhibited negligible evaporation and minimal non-specific binding of drugs of varying ionic states and lipophilicity. Biologically, the LTC exhibited functional and polarized hepatic culture with sustained metabolic CYP activity for at least 15 days. This long-term culture was then used for drug clearance studies for low- and high-clearance compounds for at least 12 days, and clearance was estimated for a range of compounds with high in vitro-in vivo correlation (IVIVC). We also demonstrated that LTC can be induced by rifampicin, and the culture age had insignificant effect on depletion kinetic and predicted clearance value. Thus, we used advances in bioengineering to develop a novel purpose-built platform with high reproducibility and minimal variability to address unmet needs for PK applications.</p>\",\"PeriodicalId\":50934,\"journal\":{\"name\":\"AAPS Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAPS Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1208/s12248-023-00870-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1208/s12248-023-00870-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

药物开发过程中铅选择的一个关键步骤是使用体外方法准确估计和优化肝脏清除率。然而,目前的方法受到缺乏生理相关性、培养/孵育时间短(与患者的药物暴露模式不一致)、药物吸收材料的使用以及长期孵育过程中的蒸发等因素的限制。为了满足这些技术需求,我们开发了一种新型的微流体人类肝组织芯片(LTC),该芯片设计具有连续介质再循环,并针对使用人类原代肝细胞的肝培养进行了优化。在这里,我们使用一系列生理相关指标和测试化合物来表征LTC,以证明我们可以准确预测低清除率和高清除率化合物的PK。非生物学特性表明,基于环烯烃共聚物(COC)的LTC对不同离子状态和亲脂性的药物表现出可忽略的蒸发和最小的非特异性结合。在生物学上,LTC表现出功能性和极化的肝脏培养,具有至少15天的持续代谢CYP活性。然后将这种长期培养用于低清除率和高清除率化合物的药物清除研究至少12天,并对一系列具有高体外-体内相关性(IVIVC)的化合物进行清除率估计。我们还证明,LTC可以由利福平诱导,培养年龄对耗竭动力学和预测清除值的影响不大。因此,我们利用生物工程的进展开发了一种具有高再现性和最小可变性的新型专门构建的平台,以满足PK应用未满足的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Milli-fluidic Liver Tissue Chip with Continuous Recirculation for Predictive Pharmacokinetics Applications.

A crucial step in lead selection during drug development is accurate estimation and optimization of hepatic clearance using in vitro methods. However, current methods are limited by factors such as lack of physiological relevance, short culture/incubation times that are not consistent with drug exposure patterns in patients, use of drug absorbing materials, and evaporation during long-term incubation. To address these technological needs, we developed a novel milli-fluidic human liver tissue chip (LTC) that was designed with continuous media recirculation and optimized for hepatic cultures using human primary hepatocytes. Here, we characterized the LTC using a series of physiologically relevant metrics and test compounds to demonstrate that we could accurately predict the PK of both low- and high-clearance compounds. The non-biological characterization indicated that the cyclic olefin copolymer (COC)-based LTC exhibited negligible evaporation and minimal non-specific binding of drugs of varying ionic states and lipophilicity. Biologically, the LTC exhibited functional and polarized hepatic culture with sustained metabolic CYP activity for at least 15 days. This long-term culture was then used for drug clearance studies for low- and high-clearance compounds for at least 12 days, and clearance was estimated for a range of compounds with high in vitro-in vivo correlation (IVIVC). We also demonstrated that LTC can be induced by rifampicin, and the culture age had insignificant effect on depletion kinetic and predicted clearance value. Thus, we used advances in bioengineering to develop a novel purpose-built platform with high reproducibility and minimal variability to address unmet needs for PK applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AAPS Journal
AAPS Journal 医学-药学
CiteScore
7.80
自引率
4.40%
发文量
109
审稿时长
1 months
期刊介绍: The AAPS Journal, an official journal of the American Association of Pharmaceutical Scientists (AAPS), publishes novel and significant findings in the various areas of pharmaceutical sciences impacting human and veterinary therapeutics, including: · Drug Design and Discovery · Pharmaceutical Biotechnology · Biopharmaceutics, Formulation, and Drug Delivery · Metabolism and Transport · Pharmacokinetics, Pharmacodynamics, and Pharmacometrics · Translational Research · Clinical Evaluations and Therapeutic Outcomes · Regulatory Science We invite submissions under the following article types: · Original Research Articles · Reviews and Mini-reviews · White Papers, Commentaries, and Editorials · Meeting Reports · Brief/Technical Reports and Rapid Communications · Regulatory Notes · Tutorials · Protocols in the Pharmaceutical Sciences In addition, The AAPS Journal publishes themes, organized by guest editors, which are focused on particular areas of current interest to our field.
期刊最新文献
Assessing Immunogenicity in Drug Reviews and Prescribing Information in Japan. Temperature Excursion Management: A Tier-Based Approach for Commercial Oral Solid Dosage Forms. UGT2B10 is the Major UDP-Glucuronosyltransferase 2B Isoform Involved in the Metabolism of Lamotrigine and is Implicated in the Drug-Drug Interaction with Valproic Acid. A Risk-Based Assessment for Determining the Pharmacokinetic Comparability Requirements of Biologic-Device Combination Products Administered by Subcutaneous Injection. Correction to: Neutralizing Antibody Sample Testing and Report Harmonization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1