Michail N Isupov, Ewald Schröder, Robert P Gibson, Jean Beecher, Giuliana Donadio, Vahid Saneei, Stephlina A Dcunha, Emma J McGhie, Christopher Sayer, Colin F Davenport, Peter C Lau, Yoshie Hasegawa, Hiroaki Iwaki, Maria Kadow, Kathleen Balke, Uwe T Bornscheuer, Gleb Bourenkov, Jennifer A Littlechild
{"title":"来自假单胞菌 CAM 质粒的 3,6-二酮樟脑单加氧酶的加氧成分:II 型 Baeyer-Villiger 单加氧酶的首个晶体结构。","authors":"Michail N Isupov, Ewald Schröder, Robert P Gibson, Jean Beecher, Giuliana Donadio, Vahid Saneei, Stephlina A Dcunha, Emma J McGhie, Christopher Sayer, Colin F Davenport, Peter C Lau, Yoshie Hasegawa, Hiroaki Iwaki, Maria Kadow, Kathleen Balke, Uwe T Bornscheuer, Gleb Bourenkov, Jennifer A Littlechild","doi":"10.1107/S1399004715017939","DOIUrl":null,"url":null,"abstract":"<p><p>The three-dimensional structures of the native enzyme and the FMN complex of the overexpressed form of the oxygenating component of the type II Baeyer-Villiger 3,6-diketocamphane monooxygenase have been determined to 1.9 Å resolution. The structure of this dimeric FMN-dependent enzyme, which is encoded on the large CAM plasmid of Pseudomonas putida, has been solved by a combination of multiple anomalous dispersion from a bromine crystal soak and molecular replacement using a bacterial luciferase model. The orientation of the isoalloxazine ring of the FMN cofactor in the active site of this TIM-barrel fold enzyme differs significantly from that previously observed in enzymes of the bacterial luciferase-like superfamily. The Ala77 residue is in a cis conformation and forms a β-bulge at the C-terminus of β-strand 3, which is a feature observed in many proteins of this superfamily.</p>","PeriodicalId":6895,"journal":{"name":"Acta Crystallographica Section D: Biological Crystallography","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4631483/pdf/","citationCount":"0","resultStr":"{\"title\":\"The oxygenating constituent of 3,6-diketocamphane monooxygenase from the CAM plasmid of Pseudomonas putida: the first crystal structure of a type II Baeyer-Villiger monooxygenase.\",\"authors\":\"Michail N Isupov, Ewald Schröder, Robert P Gibson, Jean Beecher, Giuliana Donadio, Vahid Saneei, Stephlina A Dcunha, Emma J McGhie, Christopher Sayer, Colin F Davenport, Peter C Lau, Yoshie Hasegawa, Hiroaki Iwaki, Maria Kadow, Kathleen Balke, Uwe T Bornscheuer, Gleb Bourenkov, Jennifer A Littlechild\",\"doi\":\"10.1107/S1399004715017939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The three-dimensional structures of the native enzyme and the FMN complex of the overexpressed form of the oxygenating component of the type II Baeyer-Villiger 3,6-diketocamphane monooxygenase have been determined to 1.9 Å resolution. The structure of this dimeric FMN-dependent enzyme, which is encoded on the large CAM plasmid of Pseudomonas putida, has been solved by a combination of multiple anomalous dispersion from a bromine crystal soak and molecular replacement using a bacterial luciferase model. The orientation of the isoalloxazine ring of the FMN cofactor in the active site of this TIM-barrel fold enzyme differs significantly from that previously observed in enzymes of the bacterial luciferase-like superfamily. The Ala77 residue is in a cis conformation and forms a β-bulge at the C-terminus of β-strand 3, which is a feature observed in many proteins of this superfamily.</p>\",\"PeriodicalId\":6895,\"journal\":{\"name\":\"Acta Crystallographica Section D: Biological Crystallography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4631483/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica Section D: Biological Crystallography\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1107/S1399004715017939\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/10/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section D: Biological Crystallography","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S1399004715017939","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/10/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们以 1.9 Å 的分辨率测定了 II 型 Baeyer-Villiger 3,6-diketocamphane 单加氧酶的原生酶和过表达型加氧成分的 FMN 复合物的三维结构。这种依赖于 FMN 的二聚体酶编码在假单胞菌的大 CAM 质粒上,其结构是通过溴晶体浸泡的多重反常分散和使用细菌荧光素酶模型的分子置换相结合而得到的。在这种 TIM 管折叠酶的活性位点中,FMN 辅因子的异咯嗪环的取向与以前在细菌荧光素酶类超家族酶中观察到的取向有很大不同。Ala77 残基处于顺式构象,并在β-链 3 的 C 端形成一个 β-凸起,这是在该超家族的许多蛋白质中观察到的一个特征。
The oxygenating constituent of 3,6-diketocamphane monooxygenase from the CAM plasmid of Pseudomonas putida: the first crystal structure of a type II Baeyer-Villiger monooxygenase.
The three-dimensional structures of the native enzyme and the FMN complex of the overexpressed form of the oxygenating component of the type II Baeyer-Villiger 3,6-diketocamphane monooxygenase have been determined to 1.9 Å resolution. The structure of this dimeric FMN-dependent enzyme, which is encoded on the large CAM plasmid of Pseudomonas putida, has been solved by a combination of multiple anomalous dispersion from a bromine crystal soak and molecular replacement using a bacterial luciferase model. The orientation of the isoalloxazine ring of the FMN cofactor in the active site of this TIM-barrel fold enzyme differs significantly from that previously observed in enzymes of the bacterial luciferase-like superfamily. The Ala77 residue is in a cis conformation and forms a β-bulge at the C-terminus of β-strand 3, which is a feature observed in many proteins of this superfamily.
期刊介绍:
Acta Crystallographica Section D welcomes the submission of articles covering any aspect of structural biology, with a particular emphasis on the structures of biological macromolecules or the methods used to determine them.
Reports on new structures of biological importance may address the smallest macromolecules to the largest complex molecular machines. These structures may have been determined using any structural biology technique including crystallography, NMR, cryoEM and/or other techniques. The key criterion is that such articles must present significant new insights into biological, chemical or medical sciences. The inclusion of complementary data that support the conclusions drawn from the structural studies (such as binding studies, mass spectrometry, enzyme assays, or analysis of mutants or other modified forms of biological macromolecule) is encouraged.
Methods articles may include new approaches to any aspect of biological structure determination or structure analysis but will only be accepted where they focus on new methods that are demonstrated to be of general applicability and importance to structural biology. Articles describing particularly difficult problems in structural biology are also welcomed, if the analysis would provide useful insights to others facing similar problems.