{"title":"对流冷池对网格分辨率的敏感性研究","authors":"Romain Fiévet, Bettina Meyer, Jan O. Haerter","doi":"10.1029/2022MS003382","DOIUrl":null,"url":null,"abstract":"<p>It is well recognized that triggering of convective cells through cold pools (CPs) is key to the organization of convection. Yet, numerous studies have found that both the characterization and parameterization of CP effects in numerical models is cumbersome—in part due to the lack of numerical convergence with respect to the horizontal mesh resolution, Δ<i>x</i>, obtained in typical cloud-resolving simulators. Within a comprehensive numerical convergence study we systematically increase the horizontal resolution in a set of idealized large-eddy simulations. Our analysis captures key CP processes, namely free propagation, frontal collision and merging of gust fronts. We characterize the numerical convergence of tropospheric moistening rates, gust front vortical strength and propagation speed, and the amplitude of the lobe-and-cleft instability. The understanding gained from this analysis may help develop robust subgrid models for CP dynamics.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"15 8","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2022MS003382","citationCount":"3","resultStr":"{\"title\":\"On the Sensitivity of Convective Cold Pools to Mesh Resolution\",\"authors\":\"Romain Fiévet, Bettina Meyer, Jan O. Haerter\",\"doi\":\"10.1029/2022MS003382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is well recognized that triggering of convective cells through cold pools (CPs) is key to the organization of convection. Yet, numerous studies have found that both the characterization and parameterization of CP effects in numerical models is cumbersome—in part due to the lack of numerical convergence with respect to the horizontal mesh resolution, Δ<i>x</i>, obtained in typical cloud-resolving simulators. Within a comprehensive numerical convergence study we systematically increase the horizontal resolution in a set of idealized large-eddy simulations. Our analysis captures key CP processes, namely free propagation, frontal collision and merging of gust fronts. We characterize the numerical convergence of tropospheric moistening rates, gust front vortical strength and propagation speed, and the amplitude of the lobe-and-cleft instability. The understanding gained from this analysis may help develop robust subgrid models for CP dynamics.</p>\",\"PeriodicalId\":14881,\"journal\":{\"name\":\"Journal of Advances in Modeling Earth Systems\",\"volume\":\"15 8\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2022MS003382\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Modeling Earth Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2022MS003382\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2022MS003382","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
On the Sensitivity of Convective Cold Pools to Mesh Resolution
It is well recognized that triggering of convective cells through cold pools (CPs) is key to the organization of convection. Yet, numerous studies have found that both the characterization and parameterization of CP effects in numerical models is cumbersome—in part due to the lack of numerical convergence with respect to the horizontal mesh resolution, Δx, obtained in typical cloud-resolving simulators. Within a comprehensive numerical convergence study we systematically increase the horizontal resolution in a set of idealized large-eddy simulations. Our analysis captures key CP processes, namely free propagation, frontal collision and merging of gust fronts. We characterize the numerical convergence of tropospheric moistening rates, gust front vortical strength and propagation speed, and the amplitude of the lobe-and-cleft instability. The understanding gained from this analysis may help develop robust subgrid models for CP dynamics.
期刊介绍:
The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community.
Open access. Articles are available free of charge for everyone with Internet access to view and download.
Formal peer review.
Supplemental material, such as code samples, images, and visualizations, is published at no additional charge.
No additional charge for color figures.
Modest page charges to cover production costs.
Articles published in high-quality full text PDF, HTML, and XML.
Internal and external reference linking, DOI registration, and forward linking via CrossRef.